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Abstract 

The widespread use of neural network modeling in cognitive science has resulted in 
testing of explicit and sometimes novel questions based on model predictions and in 
turn, significant theoretical and empirical advances.  Proper interpretation of 
computational models, however, requires that at least two key principles be observed. 
First, before model predictions and data can be compared, explicit hypotheses must be 
formulated that link the stimulus and task constraints faced by participants and 
measures that can be made of model performance. Second, models can be evaluated at 
three levels: theory, implementation, and parameters. When discrepancies are found 
between model predictions and data, one must determine at which level the model has 
failed. We will illustrate the importance of these principles with an analysis of some 
criticisms of the TRACE model of speech perception and spoken word recognition. 
Then, we review a recent study that allows a more direct linking hypothesis between 
TRACE and data.  

 
 
Constructing an explicit model allows strong tests of theoretical assumptions, and often leads 

to novel predictions. Indeed, models of spoken word recognition have outstripped empirical methods 
in the range of predictions made by the models and the range of questions that can be addressed using 
conventional experimental tasks. Most notably, models of spoken word recognition such as TRACE 
(McClelland & Elman, 1986) make explicit predictions about the parallel activation of similar items 
and the time course of competition between them. Common experimental tasks typically allow single, 
post-processing responses to a single stimulus; predictions such as parallel activation must be tested 
by correlations between response measures and, for example, the number of items predicted to 
compete with the stimulus by a model (see Luce & Pisoni, 1998). Time course must be inferred 
indirectly by imposing unusual task demands (e.g., speeded response tasks; McElree 1996) or 
interrupting the stimulus (as in the gating task; e.g., Grosjean, 1980).  

As we will discuss in detail shortly, eye tracking during spoken word recognition under 
certain circumscribed conditions allows a fairly transparent comparison of models and data. The 
mediated nature of all psycholinguistic tasks, however, makes model-data comparisons nontrivial. In 
order to perform such comparisons, one must formulate an explicit hypothesis linking the model to the 
task faced by participants in experiments. 
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Linking hypotheses 

All experimental tasks impose some task-specific demands on participants. In spoken word 
recognition, common tasks include lexical decision (is what you are hearing a word or not?), 
shadowing or auditory naming (repeat what you hear as quickly as you can), or word or phoneme 
monitoring (respond whenever you hear a specified word or phoneme). Similar results are typically 
found with these paradigms, although different tasks show greater sensitivity to some aspects of 
spoken words (for example, Vitevitch and Luce [1999] found differential effects in same-different and 
lexical decision tasks; facilitation for high-probability phoneme sequences in nonwords in the former, 
inhibition in the latter), demonstrating the importance of understanding the constraints imposed by 
different tasks.  

The goal in developing spoken word recognition models is clearly not to build a model of 
each task. Instead, a single model should incorporate general theoretical assumptions and provide a 
basis for explaining results from various tasks. Different patterns of results in different tasks indicate 
that a model must either include architectural features that predict the task differences, or, perhaps 
more plausibly, the output of the model must be passed through a model of the decision processes 
required for the current task demands.  

Of course, a model that can account for data from a wide range of tasks on the basis of a set of 
theoretical principles should be preferred to one that includes task-specific mechanisms. Without a 
theoretical basis for model-internal mechanisms to account for task-specific phenomena, there is no 
basis for preferring such a model to a simpler model that accounts for task-specific differences via 
task-specific decision models – or linking hypotheses.  

A linking hypothesis provides a quantitative link between the behavioral demands of the task 
faced by participants and the output of a model. For instance, given a simple case where the model 
output is activation over a set of lexical units (as in TRACE) and a behavioral response is 
hypothesized to be proportional to model activation at the time when the response is made, two things 
are needed to formulate an explicit linking hypothesis (beyond the simple assumption that behavioral 
responses should be proportional to activation). First, a transformation relating activation to the 
response measure (e.g., activation to probability of a correct response), which could be as simple as 
a one-to-one mapping, but might be a more formal decision model (e.g., the Luce [1959] choice 
model, as used by Allopenna, Magnuson & Tanenhaus [1998]). Second, in the case of this simple 
mapping, time in the model must be related to real time (see Allopenna et al. for an example).  

In the absence of an explicit linking hypothesis, one could easily misinterpret a model’s 
performance. For example, in a model in which activations are not explicitly limited by the 
activations of other items (as opposed, e.g., to a model in which activations must sum to 1), the 
difference in raw activation between an item and a potential competitor might appear far too large or 
small to predict the pattern seen in participant data. Model activations transformed by a choice 
model, however, might suggest substantially larger or smaller differences between lexical items (we 
will discuss choice models in more detail below). Even with an explicit linking hypothesis in place, 
however, care must be taken when interpreting differences between models and data.   
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Model failures: levels of analysis 
Before a model failure can be attributed to underlying theoretical assumptions, one must try to 

ascertain that the failure cannot be attributed to the implementation of the model (from the 
representation of the input, to the levels of units [in a neural network model, for instance] and the 
processing dynamics [activation functions, etc.]) or simply to parameter settings (in TRACE, for 
example, if simulations suggest competitors are inhibited too much, one cannot conclude that lateral 
inhibition at the lexical level is a flawed assumption without testing different values of lexical 
inhibition, phoneme inhibition, bottom-up excitation, etc.).  

The latter is of particular importance, as there have been suggestions that the TRACE model 
should only be tested with minor deviations from the original parameter set (Frauenfelder REF). We 
argue that this is not a tenable position. On the one hand, it is true that if different parameter sets are 
used to model different results, the model loses its generality; the breadth of model successes cannot 
be attributed to underlying theoretical assumptions if each success requires different parameters. On 
the other hand, equating a model with a parameter set produces a similar problem. The model now 
loses generality because the constraints imposed by the parameter set are, in effect, placed on a par 
with the underlying theoretical assumptions. The alternative is simple. Although experimenters should 
not limit model explorations to a “standard” parameter set, when they diverge from conventional 
parameter settings the onus is on the modeler to test whether the new parameters prevent the model 
from fitting results it was known to fit with the previous settings (this is no small burden when a 
model has been shown to account for a wide range of results). 

We will now illustrate these principles by considering an experimental paradigm that has 
attracted much recent attention because of the difficulties two groups of researchers have had 
modeling its results using variants of the TRACE model. We will discuss replications of their 
simulations, along with a recent study that employs an eye-tracking variant of the task. When the 
principles of model interpretation we have discussed are observed, it is clear that TRACE is actually 
more consistent with the results than has been claimed in the past, and in fact provides a better fit to 
the eye tracking data than competing models. 

 
 

Subcategorical mismatch effects on spoken word recognition 
 
TRACE simulations conducted by Marslen-Wilson and Warren (1994), which failed to account for 
data from their subcategorical mismatch paradigm (described shortly), have provided fodder for 
much criticism of TRACE. Some appear to find this failure damning evidence against TRACE, and 
the data from the Marslen-Wilson and Warren experiment (replicated by McQueen, Norris and 
Cutler, 1999) has been central to recent debates over model architecture (Norris, McQueen and 
Cutler, 2000). We will describe the Marslen-Wilson and Warren data and simulations, and discuss 
what the apparent failure of their simulations actually implies for TRACE. We find that they did not 
adequately explore the linking hypothesis they adopted, and that they failed to examine the level at 
which their simulations failed. We then discuss a recent eye-tracking variant of the subcategorical 
mismatch paradigm, which TRACE fits quite well. With an explicit linking hypothesis between 
TRACE activations (or fixation data) and the lexical decision task, we find that TRACE provides a 
basis for the pattern of data found by Marslen-Wilson and Warren and McQueen et al. The failures of 
the Marslen-Wilson and Warren (1994) simulations do not provide evidence against TRACE, but 
demonstrate the importance of establishing linking hypotheses and distinguishing between levels of 
model evaluation. 
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Marslen-Wilson and Warren (1994) 
Marslen-Wilson and Warren (1994; “MWW,” hereafter) adapted the subcategorical mismatch 

paradigm, which had been used to study phonetic perception (e.g., Whalen, 1984), to study spoken 
word recognition. Subcategorical mismatches are created by splicing together two stimuli such that 
coarticulatory information does not match the following phonemic segment. For example, if the vowel 
of the vowel-consonant sequence /ud/ is excised and spliced onto the excised consonant /v/ of /uv/, 
the result will be recognizable as /uv/, but the vowel contains subcategorical (i.e., subphonemic) cues 
more consistent with /d/ than with /v/. By varying the splice point, one can manipulate the relative 
evidence for the two phonemes, and measure the degree to which the listener is sensitive to such 
subphonemic variations. MWW cross-spliced the final segments of words in order to create stimuli in 
which the subcategorical mismatching information specified a potential word competitor (e.g., the 
initial consonant and vowel of “jog” spliced with the final consonant of “job”, creating a stimulus that 
would be most consistent with “jog” initially, due to coarticulatory information in the vowel, but 
would ultimately be consistent with “job”) or a nonword (“jod” plus “job”).  

Note that the three original stimuli differed in place of articulation. MWW used a notational 
system specifying the lexical status of the cross-spliced stimuli (W or N for word or nonword) and 
the place of articulation (1, 2, or 3, arbitrarily). It is worth walking through this notational system in 
detail as we will use it throughout the remainder of this paper. In our example stimulus set of “job”, 
“jog” and “jod”, “job” would be W1 (word, first place of articulation), “jog” would be W2, and 
“jod” would be N3 (nonword, third place of articulation). From a W1/W2/N3 stimulus triplet, MWW 
would construct three critical stimuli, all of which would be consistent with W1 at word offset: 
W1W1 (“job” spliced to itself, which we will also denote as “jo(b)b”, where the consonant in 
parentheses indicates the consonant specified by coarticulation in the vowel); W2W1 (“jog” spliced 
to “job”, or “jo(g)b”); and N3W1 (“jod” plus “job”, or “jo(d)b”). Another kind of triplet was also 
crucial to the MWW study, consisting of two nonwords (e.g., “smob” [N1] and “smod” [N3]) and one 
word (“smog” [W2]). The cross-spliced stimuli all were consistent with the nonword, N1, at offset 
(N1N1, W2N1, and N3N1).   

These stimuli allowed MWW to test important predictions from models like TRACE, 
specifically, that in the mismatching word-word (W2W1) and word-nonword (W2N1) cases, the 
misleading coarticulatory information in the vowel should activate a word (W2), and have inhibitory 
effects on performance compared to cases where the mismatching information matched a nonword 
(N3W1 and N3N1). The basis for this prediction in TRACE is lateral inhibition between word nodes 
at the lexical level. If the input initially favors “jog” when hearing “jo(g)b”, the corresponding node 
will be more strongly activated than when the input initially favors a different word (“jo(b)b”) or a 
nonword (“jo(d)b”). The result will be that the “jog” unit will exert a stronger inhibitory influence on 
the “job” unit given “jo(g)b”, and slow recognition. In the nonword case (W2N1), “smo(g)b” will 
activate “smog” such that it will still be unlikely to be recognized, but will delay a nonword response 
as the system, e.g., waits for “smog”’s activation to drop below the “nonword” threshold. 

Counter to the lexical inhibition predictions (W1W1 < N3W1 < W2W1), MWW found that 
reaction times and error rates to N3W1 and W2W1 did not differ reliably (though both were slower 
and more errorful than responses to W1W1; note that McQueen, Norris and Cutler [2000] replicated 
both the word and nonword pattern reported by MWW in Dutch). MWW used simulations with 
TRACE to evaluate the difference between their results and actual TRACE predictions. Their 
simulations, as presented in the paper, appear to demonstrate a rather striking failure of TRACE to 
account for their data. The primary results are plotted in Figures 1 and 2 (corresponding to MWW’s 
Figures 12 and 13, respectively; note that the values were hand-estimated from the MWW figures; the 
x-axis label, “Cycle / 4”, reflects the fact that MWW reported tracking simulations out to 80 cycles 
and then down-sampling by a factor of 4). The figures plot response probabilities for W1 given the 
different stimuli. MWW did not report the underlying activation values, nor the details of how they 
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calculated response probabilities, aside from saying they used the form of the Luce choice rule used 
by McClelland and Elman (1986) to model phonetic decisions. 

First, response strengths are calculated for each item based on activation: 

itka
it eS =       (1) 

where Sit is the response strength for item i at time t, k is a free parameter controlling the advantage 
given to larger values in the exponential function (that is, it is a way of instantiating inhibition), and ait 
is the activation of item i at time t. Then, the response probability of each item is calculated simply as 
each response strength normalized over the response strengths of all n items: 

∑
=

ij

it
it S

S
P       (2) 

MWW did not formulate a formal linking hypothesis. They suggested that a threshold model 
applied to response probabilities would be sufficient, but because of the large differences observed 
in the response probabilities, relied on qualitative comparisons. In the case of the word stimuli, even 
qualitative inspections reveal that the expected inhibitory effect is there. The response probability is 
far lower for W2W1 than for W1W1 and N3W1. But recall that the pattern of lexical decision 
response times MWW found was W1W1 < N3W1=W2W1. Thus, their TRACE simulations fail to 
account for this pattern (MWW state: “this is a clear failure of TRACE to match human performance”, 
p. 669). Indeed, from the MWW simulations, it appears that there is not a clear basis for recognizing 
W1 given W2W1; W1’s activation asymptotes at a bit more than .3.  

In the case of the nonword stimuli, the lexical decision pattern was N1N1 < N3N1 < W2N1 
(although N1N1 and N3N1 did not differ reliably). This is consistent with the pattern observed in 
their simulations (see Figure 2). We reproduce their nonword simulation data here to make two 
points. First, note that the probability of W2 given W2N1 follows a time course similar to that found 
for W1 given W1W1. There does not appear to be a basis for rejecting W2 given W2N1, in fact. 
Second, this highlights the weak response probability for W1 given W2W1 in the word simulations; 
the probability of W2 given W2N1 is much higher, and a threshold model would have to predict that 
W2 be “recognized” given W2N1, and that W1 not be recognized given W2W1. As MWW conclude, 
this would result in a high error rate given W2N1, and therefore, their TRACE simulations also fail to 
account for the nonword data. 

We have been careful to describe these as failures of MWW’s simulations rather than failures 
of TRACE. This is because MWW failed to observe either of the general principles for model 
evaluation that we have described.  

 



76 WPLS:UR, vol 2., no. 1 
 

http://www.ling.rochester.edu/wpls 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cycle / 4

R
es

p
o

n
se

 p
ro

b
ab

ili
ty

 (W
1)

W1W1

W2W1

N3W1

 
Figure 1: TRACE simulation results for word stimuli, adapted from Marslen-Wilson and Warren 
(1994). 
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Figure 2: Nonword simulations adapted from Marslen-Wilson and Warren (1994). 

Linking hypotheses. MWW fail to establish a formal linking hypothesis between their 
simulations and their data. As we have discussed, at the level of comparing their response 
probabilities to lexical decisions, it was not necessary to formalize their response threshold model of 
lexical decision: their TRACE simulations predicted large effects that were clearly missing from 
their data. However, if we back up a step at a time from their response probabilities, we will 
discover layers of assumptions that form an implicit linking hypothesis.  
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Basis for decisions. MWW assumed that in the case of the word stimuli, the only basis for a 
correct “yes” response would be the response probability for W1. However, a correct lexical 
decision does not require precise recognition; it does not matter which response probability a 
participant responds to on the “word” trials, as long as she responds “yes”. An obvious question 
raised by the low response probability for W1 given W2W1 is why the probability of W1 is so low.  
Given the high response probability for W2 given W2N1, an obvious explanation is that the activation 
of W2 given W2W1 was very high and inhibited the activation of W1 and thus lowered its response 
probability (cf. Tanenhaus, Magnuson, McMurray & Aslin, 2000; Dahan, Magnuson, Tanenhaus & 
Hogan, in press). If we allowed “yes” responses whenever any item’s response probability exceeded 
a threshold, we would expect some early “yes” decisions in response to the probability of W2 given 
W2W1. We will explore this possibility in detail below. 

Response probabilities vs. activations. MWW report response probabilities for the items they 
assumed to be relevant for the word (W1) and nonword tasks (W2). Response probabilities, 
however, are not an inherent part of TRACE, and entail another linking hypothesis, in this case 
between activations and the nature of the response required of participants. The assumption is that 
raw perceptual evidence in the form of TRACE activations will result in choice behavior similar to 
that in the kinds of tasks that the Luce choice rule (1959) was designed to model (i.e., requiring 
competitive, nonlinear transformations of evidence levels). This issue carries over to the second 
general principle. 

Levels of analysis. MWW also fail to consider what aspects of TRACE might be implicated 
in their failed simulations. They report that they found it “hard to remedy” their failure to simulate the 
lexical decision task (LDT) data for the word stimuli by “altering TRACE’s parameters” (p. 669). As 
we’ve just discussed, however, they’ve added a choice model to TRACE, with its own assumptions 
and parameters. Changing the parameters of the underlying TRACE model might have little effect 
depending on the value of k, for example (see equation 1), or the effects of such changes, filtered 
through the choice model, might be amplified. It is difficult to evaluate this possibility, though, 
because MWW reported few details about the parameters they used for their simulations, and a paper 
they cited as containing the details is no longer available (a related paper sent to us by Paul Warren 
did not contain these details, either).  

 MWW attribute the failure of their simulations to lateral inhibition at the lexical level of 
TRACE (p. 669). As they point out, this is a central aspect of TRACE’s architecture. They conclude 
that the assumptions about “lexical competitors and how new information affects existing activation 
levels” (p. 671) are to blame, and prefer models that posit bottom-up inhibition. A possibility that is 
not considered by MWW, and which we shall not dwell on, is that TRACE’s input representations 
might not be adequately realistic to capture the essence of the cross-spliced stimuli. The inputs are 
obviously poor analogs to real speech, but as we shall see, they appear to provide a good enough 
analog to the experimental stimuli. However, before attributing a model failure to a relatively deep 
cause such as theoretical assumptions regarding inhibition, more superficial potential causes need to 
be eliminated. 

We found the lexical decision response time patterns reported by MWW and McQueen et al. 
(1999) to be quite surprising, given the central theoretical assumptions underlying all current models 
of spoken word recognition: given a spoken stimulus, multiple candidate items are activated as a 
function of their goodness of fit with the input as it unfolds over time, and activated candidates 
compete for recognition (the most elegant demonstration being Luce and Pisoni’s [1998] finding that 
the time to recognize a target word depends on the number of words that are phonetically similar to 
it). This general principle predicts that if the system is sensitive to subcategorical information, given 
a subcategorical mismatch that temporarily favors another word (e.g., W2 given W2W1), that word 
should compete (i.e., inhibit the ultimate target word) more than when the subcategorical mismatch 
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does not map onto an existing word. Therefore, Dahan et al. (in press) designed an eye-tracking 
variant of the MWW task. 
 
Dahan et al. (in press) eye tracking experiment 

Over the last several years, an eyetracking paradigm has been developed for studying spoken 
language processing (e.g., Tanenhaus et al., 1995). In this “visual-world paradigm,” participants 
interact with a display of multiple objects (real objects on a table top, or two-dimensional images on 
a computer screen which can be manipulated using the computer mouse). With a properly constrained 
task (one in which participants must make a visually-guided reach in response to a spoken 
instruction1), eye movements are closely time-locked to speech.  

For example, given a display containing a piece of candy, a candle, and other items with 
unrelated names, participants are already equally likely to be fixating the candy and candle in 
response to an instruction to “pick up the candle” once they have heard the initial /kae/ of “candle.” 
Note that “equally likely” entails averaging many trials, since participants make, on average, 1.5 
fixations per trial (Allopenna et al., 1998). Unlike other tasks, however, the visual world paradigm 
allows (1) measurement of responses to multiple items, (2) a truly on-line measurement, since most 
eye movements are made without conscious awareness, and eye movements are typically made 
incrementally prior to the availability of a conscious response, and (3) an approximation to a 
continuous measure, given sufficient trials. That is, if we plot the proportion of trials on which 
participants were fixating each possible object at each time step (e.g., each video frame sampled at 
30 Hz) we find that fixation proportions map closely onto phonetic similarity over time (among other 
factors), with a constant lag. 

Eye movements tend to follow speech with a constant lag close to the minimum time it takes to 
plan and launch an eye movement in simple tasks – about 150 to 200 ms. In our “candle” example, the 
proportion of fixations to the candle begins to diverge reliably from the proportion to the candy about 
200 ms after the point of disambiguation (the onset of /l/; Allopenna et al., 1998; Spivey-Knowlton 
(1996); Tanenhaus et al., 1995). This task has proven sensitive to phoneme-level similarity (onset and 
offset competition effects, Allopenna et al., 1998), target and competitor frequency  (Dahan et al., in 
press), and neighborhood density (Magnuson, Tanenhaus, Aslin and Dahan, submitted). The paradigm 
allows an explicit linking hypothesis and quantitative tests of model predictions. We will explain the 
linking hypothesis in the context of the subcategorical mismatch experiment. 

Dahan et al. (in press) applied the visual-world eye tracking paradigm to the subcategorical 
mismatch questions raised by MWW using the following logic. First, the general predictions made by 
TRACE (W1W1 < N3W1 < W2W1) are consistent with assumptions shared by all current models of 
spoken word recognition. Second, formulating an explicit hypothesis linking activations in TRACE to 
lexical decisions is not trivial. As we discussed, a simple threshold model based on the response 
probability of the intended target is not tenable. The model has no way of knowing a priori which 
word is the target, and there is no guarantee that the item with the highest response probability 
corresponds to the target, especially with doctored stimuli with misleading coarticulatory cues. Thus, 
a more direct and continuous measure (phonetic similarity over time, as revealed by fixation 
proportions over time) might shed light on the discrepancy between model predictions and the lexical 
decision results. 

Dahan et al. (in press) created stimuli following the procedure described by MWW (e.g., 
splicing stimuli at the offset of the vowel; see Dahan et al. for details), and created 15 sets of word 

                                                 
1 Such tasks allow a functional interpretation of eye movements and thus avoid many of the pitfalls of eye movement 
interpretation discussed by Vivianni (1991). Note, however, that several experiments now suggest that eye movements 
remain fairly closely time-locked to speech even in passive viewing tasks (Cooper, 1974; Altmann and Kamide, 1999; 
Sussman and Sedivy, this volume). 
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items analogous to those used by MWW (e.g., W1=net, W2=neck, N3=*nep). The visual world 
paradigm imposes an additional constraint on the words – they all must be easily imageable nouns, 
since they must be presented to the participants visually. Participants were seated at a computer, and 
saw displays with four items. Multiple lists were constructed so that items were not repeated within 
participants. On critical trials, the picture corresponding to W1 was displayed, and one of the cross-
spliced stimuli was presented in the context of an instruction to click on one of the pictures (e.g., 
“click on the ca(b)t”). On some critical trials, W2 was also displayed. As we will see, this allowed a 
crucial test of the linking hypothesis itself. 
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Figure 3: Fixation proportions over time from Dahan et al. (in press) in the eye tracking variant of the 
subcategorical mismatch paradigm when both W1 and its competitor, W2, are displayed (adapted 
from Dahan et al., in press). 

In Figure 3, data from the conditions in which both W1 and W2 were displayed are plotted. 
Note that this data indicates a clear inhibitory effect of misleading coarticulatory information (the 
fastest rise time is for W1 given W1W1), and a larger effect when that information matches another 
word in the lexicon (W2W1) than when it does not (N3W1). In addition to plotting the proportion of 
fixations to the target, W1, we have plotted the proportion of fixations to the onset competitor, W2. 
While W2 is much more strongly considered than the unrelated items in all three stimulus conditions 
(the unrelated items are not included for the sake of clarity in the figure), the proportion of fixations to 
W2 follows a pattern complementary to that of W1: the largest proportion to W2 is in response to 
W2W1, then N3W1, and last to W1W1. Thus, the pattern of eye movement data is clearly consistent 
with the general prediction that competitors should be activated in proportion to their fit to the input, 



80 WPLS:UR, vol 2., no. 1 
 

http://www.ling.rochester.edu/wpls 

and items active in parallel inhibit one another. In other words, the eye tracking data provide clear 
evidence for lexical competition. 

We decided to replicate the MWW TRACE simulations, with the expectation that the 
activation and hence response probability of W2 given W2W1 incorporated into a different linking 
hypothesis might reduce the magnitude of the discrepancy between TRACE and the MWW LDT data. 
We followed the procedure described by MWW, creating analogs to our stimuli by cross-splicing the 
TRACE input stimuli at “vowel offset” (after the last frame containing vowel input), and presenting 
them to TRACE using the “standard” parameter set established by McClelland and Elman (1986). 
Raw activations are shown in Figure 4. To our surprise, given the MWW simulations, the underlying 
TRACE activations of W1, without considering W2, appeared much more consistent with the MWW 
LDT data than the MWW simulations suggested would be possible. Rather than the extreme 
differences between the W2W1 condition and the others shown in Figure 1 (and their Figure 12), we 
found much more modest (although substantial) differences.  

To make quantitative comparisons between the eye movement data and TRACE, we used an 
explicit linking hypothesis (developed by Allopenna et al. [1998] and Dahan, Magnuson and 
Tanenhaus [2001]), which assumes eye movements in the visual world paradigm are based on two 
sources of input: the bottom-up speech input and the visual display. Our model for the bottom-up 
speech input was lexical activation in TRACE. Response strengths for the items of interest were 
computed using Equation 1. To incorporate the constraints of the visual display, we used a variant of 
the Luce choice rule (Luce, 1959). The participant was limited to four possible fixation targets – the 
items displayed on the screen. So instead of normalizing over the response strengths of all items in the 
lexicon, as in Equation 2, we normalized over the response strengths of only the four possible fixation 
targets (using a value of 7 for k, the same value used to fit data by Allopenna et al. [1998] and Dahan, 
Magnuson and Tanenhaus [2001]). Thus, lexical activation was based on activation and competition 
over all lexical items, but our choice model explicitly incorporated the choice task faced by the 
participant. 

Simulation results for the data in Figure 3 (W1 and W2 displayed) are shown in Figure 5. The 
raw TRACE activations in Figure 4 provide a good qualitative fit to the data shown in Figure 3, but 
the simple linking hypothesis transforms the activations to provide a closer fit to the data. However, 
this is not a case of simply tweaking parameters to improve fit; the choice model is motivated by the 
explicit linking hypothesis. 

The data from critical trials where W1 was displayed but W2 was not (in which case W1 was 
presented among three unrelated distractors) are shown in Figure 6. The linking hypothesis makes 
explicit predictions about the differences that should be observed when W2 is not displayed. The 
auditory stimulus is the same, so the contribution of the lexical model (TRACE) is predicted to be 
identical. The visual choices are different, though, with the result that the degree of competition with 
W2 that can be detected is predicted to be reduced. Although the support for W1 is less given W2W1 
than W1W1, fixations cannot be made to W2, and thus a more modest inhibition effect is predicted. 
Simulated predictions from TRACE and our linking hypothesis (with k=7, normalized over the target 
and three unrelated distractors) are shown in Figure 7. As predicted, the W1W1 < N3W1 < W2W1 
pattern in rise times is observed again (Figure 6), but the differences are more modest than when W2 
was displayed.  
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Figure 4: TRACE activations from simulations analogous to the experiment plotted in Figure 3 
(adapted from Dahan et al., in press). 
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Figure 5: Response probabilities predicted from the TRACE activations displayed in Figure 4 
transformed with a variant of the Luce choice rule (adapted from Dahan et al., in press). 
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Figure 6: Fixation proportions over time from Dahan et al. (in press) in the eye tracking variant of the 
subcategorical mismatch paradigm when W1 was displayed, but its competitor, W2, was not (adapted 
from Dahan et al., in press); “D” indicates an unrelated distractor. 
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Figure 7: Response probabilities predicted from the TRACE activations displayed in Figure 4 when 
W2 is not included in the choice rule (adapted from Dahan et al., in press). 
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There are substantial discrepancies between the TRACE simulations and the data. In 
particular, cohort proportions rose substantially above target proportions in the data shown in Figure 
3, whereas in TRACE, the cohorts never outstrip the targets. This suggests that, for example, more or 
less lateral inhibition, or perhaps stronger bottom-up weights, might be called for in TRACE. When 
W2 is not included in the choice rule, TRACE predicts a much larger weakening of the W2W1-
W1W1 difference than we observe in Figure 6. This suggests our linking hypothesis may need further 
work. However, we did not explore parameter or linking hypothesis changes because we have used 
the same parameters and hypothesis to simulate competition effects (Allopenna et al., 1998) and 
frequency effects (Dahan et al., 2001). 

Although the differences between simulations with and without W2 do not predict the 
differences between the data in the corresponding conditions very precisely, this result provides 
support for the linking hypothesis. Rather than simply fitting the data, the choice model incorporated 
into the linking hypothesis generates testable predictions independent of the underlying lexical model. 
The discrepancies may indicate that we either need to postulate a stronger influence of the visual 
displays (e.g., via indirect lexical activation), or a more concrete choice mechanism. We use the 
choice rule to predict fixation probabilities in the aggregate, but we cannot account for trial-by-trial 
fixation “decisions” or individual differences. A model of probabilistic fixation generation might 
provide a better fit and might also allow us to explore individual differences. We are currently 
working on such a model. 

Differences between simulations. We invested considerable effort in trying to understand the 
differences between our simulations and those conducted by MWW. MWW provide scant details 
about the procedures they followed. As we mentioned above, the paper cited by MWW as containing 
the details about the simulations is no longer available, although Paul Warren sent a related paper 
with a few details, and was helpful as we attempted to replicate the MWW simulations. We will now 
review these attempts. 

MWW used five sets of word and non-words that ended in voiced stops, and used a 390-word 
lexicon comprised of "all the uninflected monosyllabic words using TRACE's 15 phonemes [from] 
Longman's [1987] Dictionary of Contemporary English" (MWW, 1994, p. 668).  Warren provided us 
with a 392-word version of the lexicon they used ("Monolex").  An examination of Monolex shows 
that there are only 21 possible bases for stimulus sets.  Among TRACE's four vowels, there are 10 
possible sets for /a/, 2 for /i/, 0 for /u/, and 4 for /^/.  Of the three possible combinations of 
consonants 1 and 2 to make W1 and W2 (i.e., sets where there is a word completion with C1 
(consonant 1, i.e., place of articulation 1) and C2 but not C3 [e.g., /dab/, /dad/, /dag*/]), there are 6 
for /b,d/ (or /d,b/), 11 for /b,g/, and 4 for /d,g/.  To make a complete set of words and non-words, 
there must also be at least one neighborhood in the lexicon where VC2 makes a word but VC1 and 
VC3 do not (e.g., */glab/, /glad/, */glag/).  The number of possible sets can be doubled by rotating 
items through W1 and W2 assignments (e.g., W1=/dab/, W2=/dad/, as well as W2=/dab/, W1=/dad/).  
It was possible to make complete sets for every context with the vowels /a/, /i/ and /^/, with one 
exception:  /id/, /ig/ was not possible (although /ig/, /id/ was) because there was no word ending in 
/ig/ that did not have neighbors ending in /ib/ or /id/.  This left us with 41 possible base stimulus sets 
from Monolex (many more would be possible if we used every possible nonword set for every word 
set – but these would be terribly redundant, unless we had reason to suspect that the identity of the 
third consonant was crucial; instead, we attempted to make the sets resemble the one set of natural 
materials described by MWW in their Table 1 on p. 657).   

We divided these sets into two groups according to whether W1 and W2 were CVCs or 
CCVCs.  We began using the 25 CVC sets. This allowed us to avoid the problem of aligning the 
outputs at the vowel, as MWW did, since they used a mixture of CVC and CCVC items.  Items were 
spliced one time slice before the center of the final C (slice 24) and one slice earlier and later.  
Feature spreading was set to +/- 6 slices for all features, as in the original McClelland and Elman 
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(1986) simulations. We again failed to replicate the patterns reported by MWW in their Figures 12 
and 13:  with 24 as the splice point, the activation and probability patterns closely resembled those 
we found in the simulations with analogs of our own experimental items; we did not observe the 
extreme difference between W2W1 and N3W1 or the "recognition" of W2N1 as W2.  A splice point 
of 25 was clearly too late:  neither W2W1 nor N3W1 were "recognized" as W1:  the activations and 
probabilities of these items both peaked much lower than W1W1, and dropped to baseline levels at 
about the same time W1W1 peaked. A splice point of 23 was too early; there were almost no 
differences between the three word conditions. 

Another possibility is that the CCVC items might be responsible for MWW's simulation 
results.  The extra initial consonant might provide enough time for competitor activations to reach a 
level sufficient to yield the significant depression of W1's activation MWW reported.  However, in 
simulations with the 16 CCVC items (with splice points at 30), competitors probabilities exceeded 
those in the CVC simulations by only negligible amounts.   

An examination of each individual item showed that almost all items share the same rise time 
patterns:  W1W1 < N3W1 < W2W1, with the difference between WW1 and N3W1 of approximately 
equal magnitude as the difference between N3W1 and W2W1.  The activation of W1 reaches 
approximately the same peak (between 70 and 80) around the 70th cycle given any of the three 
stimuli, W1W1, N3W1, W2W1.  For the nonword items, W2 is activated much more strongly by 
W2N1 than by N3N1, but the peak given W2N1 is about half that of W1 given W1W1, whereas 
MWW's simulations showed W2 | W2N1 and W1 | W1W1 as having nearly identical activation 
patterns.  There were eight items that showed trends somewhat similar to those reported by MWW.  
These were /drab/, /grid/, /kub/, /kud/, /lig/, /st^d/, /s^b/, and /tab/.  However, none of these really fit 
the trends from MWW's simulations.  In particular, the probability of W1 given W2W1 is always 
much higher than in the MWW simulations. 

Another possibility is that we used different parameter sets.  We used the parameters given by 
McClelland and Elman (1986) for our initial simulations. MWW report using “the standard parameter 
settings that give TRACE the appropriate performance in normal word recognition (cf. Frauenfelder 
& Peeters, 1990)” (p. 668).  However, Frauenfelder and Peeters only describe the values of a couple 
of parameters (the maximum and minimum activation levels). Frauenfelder & Peeters (1998), 
however, describe an alternative set of parameters that they tweaked to get good performance with 
their "Biglex" lexicon.  Simulations with those parameters yield virtually identical results. 

The value of k in the Luce choice rule could also have a large effect. Since MWW did not 
report the value they used, we tried to find the value that would yield the peak response probability 
level for W1 given W1W1 in their Figure 12.  The best value is 15, but there is no value between 5 
and 20 that gives a result much more similar to the MWW simulations (and the peak response 
probabilities differed more from Figure 12 as the value of k was varied from 15). 

One striking difference between the CCVC and CVC simulations separately was that the 
CCVC items reach higher probability levels than the CVC items with k set to 10.  Thus, another 
possible explanation is that averaging particular CCVC and CVC items could lead to the trends 
reported by MWW.  However, our attempts at coming up with such an average have failed. We could 
not come up with a mixture of five CCVC and CVC items which, when averaged, would resemble the 
MWW simulations more closely than our own. 

Finally, we considered that there might be differences in our implementations of TRACE. Paul 
Warren supplied us with the source code for his Macintosh-based TRACE implementation 
(MacTRACE), and we tested several stimuli using the default parameter MacTRACE settings (the 
Frauenfelder and Peeters parameters, and a value of 20 for k). The results are shown in the top panel 
of Figure 8. The results closely resemble those from all of our other simulations. The main difference 
is that the probabilities for W1 asymptote more quickly. This is due to the large value of k. Note that 
the probabilities also start out at 0, whereas they began at .25 in our simulations. This is because in 



Magnuson, Dahan, & Tanenhaus – Computational model interpretation 85 
 

http://www.ling.rochester.edu/wpls 

our simulations, only the displayed items were included in the choice rule, but for these simulations, 
all lexical items were included (following the procedure of MWW). However, these are not crucial 
differences. Including all items changes the time course only slightly compared to our simulations, but 
still does not yield the results MWW reported. We experimented with using smaller values of k. With 
much smaller values (around 10), we can get W1 given W1W1 and W1 given N3W1 to asymptote 
around .7 (as in the MWW figures), but W1 given W2W1 does not asymptote at .3 – it always 
asymptotes around the same value as for the other conditions, although slightly later. 

If we were to down-sample by a factor of 4, and, like MWW, clip at the twentieth down-
sampled cycle the results would not resemble those presented by MWW at all. If instead we down-
sample by 2 and clip the results at the twentieth down-sampled cycle, we find differences at cycle 20 
that resemble those shown in MWW’s Figure 12, although the trends do not perfectly resemble theirs 
(because W1 given W2W1 always reaches too high a probability by the clip point).  

This suggests that it might be possible, by down-sampling by a factor of 2 instead of 4, 
clipping at the twentieth down-sampled cycle (cycle 40), and using a smaller value of k, to obtain 
results comparable to theirs. However, this requires an indefensible assumption. Why should the 
results be clipped? The model may pass through a stage where very large differences are predicted, 
but how can we determine that that stage should form the basis for the lexical decision results? The 
differences become smaller as time goes on, and clipping the simulation data where the differences 
are large is simply arbitrary. 

Thus, despite going to great lengths to attempt to replicate the MWW simulations, we have 
been unable to, even with assistance from Paul Warren and the computer programs they used to 
conduct the simulations. We are convinced that the basic prediction of TRACE is not so extreme as 
that claimed by MWW for the subcategorical mismatch data. MWW remarked that “…we cannot 
guarantee that there is not some version of TRACE that would do a better job of simulating the … 
results” (p. 671). Our simulations show that the standard version of TRACE does a better job 
simulating the results than whatever version they used; indeed, we simply cannot arrive at a version 
of TRACE that will do as poor a job as in the MWW simulations. 

However, even at later cycles, in all of the simulations we have presented, TRACE still does 
not appear to be able to predict the MWW and McQueen et al. (1999) LDT data patterns (although it 
fits the eye tracking data reasonably well). TRACE always predicts a substantial difference in the 
response probability to W1 given W2W1 versus N3W1. As we mentioned earlier, however, 
alternative linking hypotheses might provide a basis for predicting the W1W1 < N3W1 = W2W1 
pattern found in the LDT data.  
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Figure 8: MacTRACE simulations.  

 

Simulating lexical decisions. A “yes” response to W1W1, W2W1, or N3W1 does not entail 
that W1 was perceived when the response was made. A “yes” response merely indicates that the 
participant found it probable that the stimulus was a word. The activation of any word could result in 
a “yes” decision (of course, this is not a novel suggestion; see Grainger and Jacobs [1996], for 
example, and Tanenhaus et al. [2000] explicitly formulated this hypothesis). Let us follow the 
implications of this logic for each word stimulus. 

For W1W1, we expect W1 to inhibit all other words because of the large bottom-up support 
for W1, and depending on the response threshold, most if not all “yes” responses will be based on the 
activation of W1. Given N3W1, the activation of W1 will be slowed due to the subcategorical 
mismatch. Because the input does not match W2 better than W1, W2 is unlikely to reach threshold. In 
the case of W2W1, we would expect the activation of W2 to be elevated relative to the W1W1 and 
N3W1 conditions. This would slow the activation of W1, but the high activation of W2 might reach 
the threshold with the result that responses to W2W1 would include more early responses. These 
“yes” responses to W2, when averaged with the later responses to W1, would result in a lower mean 
given W2W1 than expected. 

In order to test the viability of this hypothesis, we developed a simple model to simulate 
probabilistic lexical decisions when either W1 or W2 reaches threshold (the activations of other 
words in our TRACE simulations remained low throughout stimulus presentations, and never reached 
the thresholds we used). We conducted simulations using both the fixation proportions and TRACE 
activations from the Dahan et al. (in press) study (Experiment 2 from that study). Each simulation was 
repeated 1000 times for each of the 15 experimental items, across a range of thresholds. The 
algorithm worked as follows: 
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1. At the current time step, randomly select W1 or W2 
2. If the selected activation or proportion is greater than the threshold 

a. Compute how far above threshold (x = data – threshold) 
b. Generate r, a random number between 0 and 1 

i. If r ≤ x, “yes”; else, start from step 2 with the other proportion or activation if 
it has not been checked; else, return to step 1 to check the next time step 

ii. If “yes”, stop; else, if at last time step, generate “no”; else, return to step 1 to 
check the next time step  

Figure 9 presents predicted lexical decision latencies as a function of threshold for observed 
fixation proportions (upper panel) and TRACE activations (lower panel). The predicted latencies 
given W2W1 and N3W1 are roughly identical and higher than those given W1W1 across a range of 
thresholds before they diverge in both simulations. This demonstrates the viability of the hypothesis, 
and both can therefore provide a basis for the lexical decision data patterns found by MWW and 
McQueen et al. (1999). The simulations based on TRACE activations provide a basis for the W1W1 
< N3W1 = W2W1 lexical decision pattern. Over a modest range of thresholds, similar response times 
(greater than the response time for W1W1) are predicted for W2W1 and N3W1. The simulations 
based on the fixation proportions provide a remarkable fit to the McQueen et al. (1999) data. 
McQueen et al. found response times of 340 (W1W1), 478 (W2W1), and 470 ms (N3W1). The 
predicted response times in the upper panel of Figure 11 are ms from word onset. If we convert them 
to ms from word offset by subtracting 585 ms (the average duration of stimuli in the Dahan et al. 
study), the predicted response times at a threshold of .42 are 274, 449 and 442 ms, respectively. 
These absolute response times are all shorter than those found by McQueen et al., but the differences 
between them are quite close to those in the McQueen et al. data. 

Norris et al. (2000) objected to this logic by claiming that it would predict a bimodal 
distribution of response times for W2W1, which they did not observe in the McQueen et al. (1999) 
data. However, a mixture of two distributions need not yield a bimodal distribution. Depending on the 
means and variability of the distributions, the possible combined distributions range from a clear 
bimodal distribution to one which cannot be distinguished from a unimodal distribution. Rather than a 
bimodal distribution, the prediction is that the variability in the W2W1 response time distribution 
should be greater than that for the N3W1 distribution. McQueen et al. graciously provided us with the 
raw data from their experiment. We analyzed standard deviation for the W1W1, W2W1, and N3W1 
conditions. Consistent with our hypothesis, the mean standard deviations were 162, 201, and 168 ms, 
respectively, with a significant effect of condition (F[2,88] = 11.85, p < .0001, MSE = 1700.8). 
Newman-Keuls tests indicated that the standard deviation was greater in the W2W1 condition than in 
the N3W1 condition at the .05 level. This provides highly suggestive confirmatory evidence for our 
hypothesis. 
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Figure 9: Lexical decision simulations. Upper panel: based on fixation proportions from Figure 3. 
Lower panel: based on TRACE activations. 
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Discussion 
We have argued that model failures may be due to a number of different factors. Without 

explicit hypotheses linking the input and task conditions faced by experimental participants to model 
inputs and outputs, one cannot evaluate apparent discrepancies between models and data. Even with 
explicit linking hypotheses, model failures may implicate parameters, implementation or architecture, 
or theoretical assumptions. It is vital to distinguish between these levels, lest one reject a model 
unfairly.  

In the example of the MWW subcategorical mismatch TRACE simulations, we demonstrated 
that the apparent failure of TRACE was (1) not as extreme as it appeared in the MWW simulations 
(we could not replicate the pattern shown in their simulation figures) and (2) dependent on the 
hypothesis linking TRACE activations to lexical decisions. We showed that an arguably simpler 
linking hypothesis than that used by MWW (one that did not have a priori knowledge of target 
identity) provides a basis for the pattern of lexical decision latencies found by MWW and McQueen 
et al. (1999). Furthermore, TRACE does a fair job of capturing the trends in on-line eye tracking data, 
and the hypothesis linking TRACE activations to fixation proportions over time makes testable 
predictions which we found to be generally accurate (if not precise).  

Norris et al. (2000) conducted their own simulations of the subcategorical mismatch data with 
their “Merge” model and a mock-up of TRACE (with very few nodes, no means of representing 
temporal relations – “jog”, “goj”, “jgo”, etc., would all activate “jog” equally – and a highly 
impoverished input representation). They were able to obtain the lexical decision latency patterns 
found by MWW and McQueen et al. (1999) with both models using a simple threshold linking 
hypothesis. However, they were only able to fit the results with their miniature TRACE model when 
(a) they used an algorithmic optimization procedure to set its parameters and (b) when the model was 
allowed to “resonate” for 15 time steps on each slice of input. They then attribute the MWW TRACE 
failure to the absence of such resonance in TRACE, and note that the fit obtained with mini-TRACE 
was “less than optimal” and “not equal to the fit” found with Merge. The implication is that because it 
was so difficult to set parameters for mini-TRACE, and because the results were not as good as for 
their Merge model with those parameters, TRACE is to be dispreferred. This conclusion is not sound, 
however. We have conducted simulations with a similar, though somewhat simpler, “mini-TRACE” 
and had little trouble finding parameters that work. But more importantly, the mock-up of TRACE 
they used is simply not comparable to the full version of TRACE. While we have argued that it is 
important to distinguish between levels of model analysis, this is not to say that these levels are 
independent. One cannot test theoretical assumptions without an adequate implementation and 
appropriate parameters.  
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