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1 Abstract 
 
 
Computational models of the auditory cortex aim to replicate the brain’s responses to many stimuli, 
and one of the hardest goals is encoding the rich and varied structure of speech in a robust way.  
However, often these models oversimplify the modeling of the auditory periphery, approximating 
them with linear filterbanks.  In an attempt to improve the coding of speech stimuli, we adapt a 
recent two stream model for auditory cortex by augmenting it with a physiologically realistic 
model of the inner ear, brainstem and inner ear that accurately models the distinctive nonlinearities 
of these mechanisms ignored by linear approximations.  We found that adding this more complex 
periphery results in spectrally richer responses to vowels and connected speech and improves the 
model’s ability to encode key features of speech such as higher formant frequencies.  These results 
suggest that future modeling work of the auditory system should emphasize the physiological 
realism of all stages to best study the coding of complex stimuli such as speech. 
 
 

2 Introduction 
 
 
Encoding speech is one of the most important functions of the human auditory system.  Phonetic 
analysis has traditionally characterized speech sounds by features of their frequency content, but 
the ability to perceive speech is robust to dramatic changes of sound level and pitch (Hillenbrand 
et al. 1995, Ladefoged 2012).  Thus while the analysis of speech waveforms typically characterizes 
vowels in terms of their formant frequencies, the brain obviously computes a representation of 
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speech sounds that is robust to variations across speaker and sonic conditions and not linearly 
dependent on formants. 

Several computational models of the auditory nerve, the inferior colliculus, and auditory cortex 
have been developed in order to study the spike rate responses of neurons in the human auditory 
system and their patterns (Zilany, Bruce, Nelson, and Carney 2009, Zulfiqar et al. 2020). With 
models as these, it is possible to study  physiologically accurate simulated responses to speech 
sounds. In this work, a computational model for four areas of the auditory cortex is modified to 
include peripheral processing models for the auditory nerve and the inferior colliculus, and the 
response properties to speech sounds with and without peripheral processing are studied. It is 
hypothesized that introducing peripheral models that are more physiologically accurate will 
improve cortical model responses to speech sounds, specifically vowels and a set of sentences. 
Modified models will allow insight into not only the models themselves, but will provide a tool 
for studying speech sounds at a more fundamental level than that of acoustic analysis. 
 
 

3 Background 
 

3.1 Speech Processing in the Auditory Periphery 
 
 
Figure 1 shows a simple diagram of the human auditory pathway leading up to the auditory cortex. 
Pressure variations in the air are transmitted to the cochlea via the middle ear, and the physical 
vibration of the basilar membrane are transduced to electrical signals via the inner and outer hair 
cells (I/OHC), at which point key non-linearities are introduced. These cochlear hair cells are tuned 
to different frequencies, creating a tonotopic organization that  is maintained throughout the 
auditory pathway.  Information then travels from the cochlea through the auditory nerve (AN), 
shown in figure 1 as the three lines extending from the cochlea.  The auditory nerve (AN) transmits 
this signal to the cochlear nucleus, and the information passes through other areas of the brainstem 
before reaching the inferior colliculus (IC),  All auditory information must then pass through the 
inferior colliculus (IC), essentially a midbrain bottleneck of information before the signal is passed 
onto higher processing centers in the auditory cortex (AC), where the sound is understood in 
context. This work focuses primarily on three components of the pathway: the auditory nerve 
(AN), the inferior colliculus (IC), and auditory cortex (AC). 
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Figure 1. Simplified diagram of the human auditory pathway (from Dona 2018) 

 
 

3.2 Computational Models 
 
 
Each level of processing in the human auditory pathway encodes different features of a sound, and 
these patterns are fairly well defined for speech sounds. In response to harmonic sounds, AN-fiber 
responses are phase-locked to the beating between harmonics that creates a strong periodicity at 
F0, which is the pitch of the speaker. AN fibers which are tuned to a frequency near a formant are 
dominated by the harmonic that is closest to the formant peak (Delgutte and Kiang 1984). The 
pitch of a speaker is encoded similarly in the auditory nerve (Zilany et al., 2009). Neurons in the 
inferior colliculus exhibit a selectivity to sound fluctuations in addition to energy at a given 
frequency (Carney and McDonough 2019). There are three types of tuning represented in the IC: 
band-enhanced (BE) cells, which are excited by amplitude modulation of attuned frequency, band-
suppressed (BS) cells which are similarly inhibited, and hybrids of BE and BS. At vowel formant 
frequencies, BE cells show lower spike rates, and BS cells show increased spike rates (Carney and 
McDonough 2019). 

Figure 2 shows a system diagram underlying the AN model. The stimulus is first processed 
through a filter that matches frequency shaping in the middle ear, and then through models of the 
IHC and OHC. Finally, the synapse between the inner hair cells and the auditory nerve is modeled 
by a power-law system, matched to patterns of neurotransmitter transmission into the synaptic cleft 
(Zilany, Bruce, Nelson, and Carney 2009). Figure 3 shows a schematic diagram of the Same-
Frequency Inhibition-Excitation (SFIE) model for the IC for a single AN fiber (Nelson and Carney 
2004). 
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Figure 2. Schematic for auditory nerve model. From Zilany, Bruce, Nelson, and Carney 2009 

 
 
 

 
Figure 3. Schematic diagram of the SFIE model. From Nelson and Carney 2004, Figure 2. 

 
 

Inputting a sound waveform through both of the models explained above gives us helpful 
information about the representation of speech sounds in the brain. Figure 4 below shows example 
responses in the AN and IC band-enhanced models for the center 150 ms of an /æ/ vowel spoken 
by a female speaker from Boston, Massachusetts. Very distinct features in these responses arise at 
the pitch of the speaker (F0) below 500 Hz and at each of the first two formant frequencies. The 
strong alternating bands of light and dark far below 500 Hz (around 100 or 200 Hz) in both 
responses represent the fact that the firing rate of neurons in these areas matches fluctuations at 
the pitch of the speaker, known as phase locking (Carney, Li and McDonough 2015). Furthermore, 
at the first and second formants, there are bands of increased activity in the AN model, and 
decreased activity in the IC band-enhanced model. At these frequencies, neurons phase lock to 
fluctuations in the sound waveform as they do to the pitch, though these bands are closer together 
because the component is at a higher frequency. In the auditory nerve, this is encoded by an 
increase in firing rates in neurons near formant frequencies. In band-enhanced cells, this is 
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represented by a decrease in activity as shown by the dark bands near formant frequencies. These 
models very strongly represent important features of vowels, and consequently other speech 
sounds. Therefore, they prove useful in distinguishing differences in speech sounds. When used in 
conjunction with cortical models, then, we would expect that we can use the output of cortex to 
differentiate different vowels and analyze important features.  

 
 

/æ/, female: F1 = 1034 Hz, F2 = 1863 

 

 

 

Figure 4. Example responses in the AN model and IC model for a band-enhanced cell to the 
vowel /æ/ for a female speaker from Boston, Massachusetts. 

 
 

The main aim of this work is to use the above models for the AN and the IC to improve 
responses to speech in a model of auditory cortex developed by Zulfiqar and colleagues that 
emphasizes dorsal and ventral streams, with the goal of differentiating information encoded in a 
“Fast” area and a “Slow” area (Zulfiqar et al. 2020). Figure 5 shows the anatomical and systems 
structure of the cortical model. This model represents the activity of cortex in 4 “areas”, including 
two “core” areas – primary auditory cortex (A1) and a rostral area (R) – which feed into the “Fast” 
belt area and the “Slow” belt area respectively.  Each area is composed of 98 units, which do not 
necessarily represent individual neurons as much as populations of neurons with similar properties. 

The division of auditory processing into two streams is thought to play a significant role in 
auditory cognition and has been linked to deriving semantic information (“what” processing) or 
processing sound location and sound movement (“where” processing) (Kaas et al. 1999, Romanski 
et al. 1999, Belin and Zatorre 2000, Kaas and Hackett 2000, Rauschecker and Tian 2000, Tian et 
al. 2001, Arnott et al. 2004). The cortical areas in this model respond to both higher energy and 
higher modulation in lower processing areas. The information from the A1 core area feeds into the 
Fast belt area, and the information from the R core area feeds into the Slow belt area. The Fast and 
Slow areas differ in their latency of response.  
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Figure 5. Structure of the model of auditory cortex from Zulfiqar et al. 2020. 

 
 

Each unit in the 4 areas were simulated via a Wilson and Cowan cortical model (WCCM), 
which provides a physiologically reasonable firing rate output based on excitation and inhibition 
dynamics in the human neocortex (Wilson and Cowan 1972, 1973). The two-stream model outputs 
rate vs. time data for each of the 98 units in response to an auditory stimulus. Each area of the 
cortical model has a population of excitatory and inhibitory units, with recurrent feedback 
connections between all units and a common external stimulus for every unit each population.  For 
their experiments, Zulfiqar et al. (2020) presented an inhibitory input of zero, so for the purposes 
of fair comparison we followed suit. 

As shown in Figure 5, the peripheral processing stage in the original cortical model involves a 
simple bandpass filter bank and a lateral inhibition network, meant to represent broadly processing 
in the cochlea and subsequent brainstem and midbrain areas. We posit that improving this 
peripheral processing stage with physiologically reasonable models of brainstem and midbrain 
areas will improve the cortical responses to speech, and lead to valuable insights in speech 
perception and auditory cognition. 
 
 

4 Materials and Methods 
 
 
Shown below in figure 6 is a schematic of the experimental design. In order to compare how the 
addition of different peripheral models changes responses to speech sounds, recorded wav files 
for a male and female speaker were run through three different versions of the cortical model, as 
follows: 1) The cortical model with the original simple periphery, 2) the cortical model receiving 
input directly from the auditory nerve response, and 3) the cortical model receiving input directly 
from the IC BE cell response. 
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Figure 6. Experimental design schematic. 

 
 

4.1 Vowel Contrast 
 
Vowels are some of the easiest units of speech to understand computationally, due to their highly 
regular periodic structure, their ability to be characterized by spectral peaks, and their universal 
importance in human language. Phonetic analysis often plots vowels in terms of their first two 
formant frequencies (F1 and F2), peaks in the spectrum found to correspond to location of the 
articulators.  

The vowels chosen to evaluate the models with different levels of complexity in the periphery 
were chosen such that they were highly contrasted in the vowel space. The five vowels used were 
/æ/, /ɛ/, /i/, /ʊ/, and /u/. Two 20-year-old native English speaking undergraduate students at the 
University of Rochester were recorded, and a center section of each vowel of about 150 ms was 
selected for analysis with the several models. These vowels were extracted from a wordlist of 
common English words, namely ‘bad’ (/bæd/), ‘bed’ (/bɛd/), ‘bead’ (/bid/), ‘buddhist’ (/budɪst/), 
and ‘boot’ (/but/).  

Cortical output response to vowels was evaluated to explore representation of the pitch of the 
speaker (F0) and the first three formant frequencies. 
 
 

4.2 Responses to Connected Speech 
 
 
To best compare the changes in performance introduced by the use of a more physiologically 
realistic model for the auditory periphery, we aimed to replicate the analysis of Zulfiqar et al. of 
speech sounds.  Sixty sentences from the TIMIT database were fed as input to the cortical model 
with the AN/IC periphery and the original gammatone/LIN periphery (Garofolo 1993).  From a 
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normative perspective, a model of auditory cortex should encode as rich a set of linguistically 
important features (such as pitch of the stimulus and formants across time) in as efficient a manner 
as possible. 
 
 

5 Results 
 

5.1 Vowel Contrast 
 
 
Five different vowels from only the male speaker of the two speakers were analyzed through 
different peripheral models to observe changes in frequency responses at the level of the cortex. 
Table I shows the first three formant frequencies for each of the vowels used. 

 
 

Table 1. Formant Frequencies of Vowels Presented to Model 
 

Vowel Phoneme F1 (Hz) F2 (Hz) F3 (Hz) 

æ 592 1576 2502 
i 249 2305 2964 
ɛ 469 1609 2527 
u 295 952 2316 
ʊ 352 1307 1723 

 
 

Figure 7b  shows the cortical output for each of the five vowels in all four model areas and for 
all three peripheral combinations. Circles of the same color as each vowel response are positioned 
at the formant frequencies. Important to note are the differences in rate for the vowels at each 
formant frequencies, and where peaks in the responses fall. The legend for all figure 7b graphs is 
shown below in Figure 7a. 

 
 

 
Figure 7a. Key of Formants for Figure 7b 
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Input Type A1 Response R Response 

Original 

Periphery 

 

 

 

AN 

 

 
 

IC BE 
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Input Type Fast Response Slow Response 

Original 

Periphery 

 

 

 

AN 

 

 

 

IC BE 

 

 

 

Figure 7b. Cortex model output for five spoken vowels. Outputs for three different peripheral 
models are shown for all four modeled areas of the auditory cortex. Dots on each curve represent 

the firing rate at the formant frequencies for that vowel. 
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Vowel contrast can be observed in Figure 7 by noting how far apart firing rates of model 
neurons are between vowels. For example, if ‘æ’ and ‘i’ have similar firing rates at a formant of 
‘æ’ it is possible that the neural response between these two vowels cannot be distinguished at that 
formant. The human brain can tell these two apart very easily, so we expect vowel contrast to be 
high in the neural responses. It is also important to note that, since the Fast and Slow areas encode 
more abstract information than vowel identity, vowel contrast may not be represented in the same 
way in these areas than in the core (A1 and R) areas. 
 
 

5.2 Responses to Sentences 
 
 

 Results were quantified in a number of different methods.  Mean spectrum coherence was 
calculated between the input and output to the cortical model, which summarizes how predictable 
the output would be by a linear least squares regression.  A spectral encoding of pitch was also 
demonstrated across the four areas, especially the A1 and Slow areas.  A sample response to a 
sentence is shown in Figure 8, with temporal and spectral profiles plotted on the corresponding 
axis.  Note how the overall patterns of the responses are similar, but the modified periphery (the 
AN/IC model) preserve richer information in higher frequencies.  Particularly in speech 
perception, we hypothesize that these higher frequencies are key 
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Gammatone/LIN Periphery AN/IC Periphery 

  

  

  

  

Figure 8: Example responses of each model to a sentence from the TIMIT database. 
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5.2.1 Mean Spectrum Coherence 
 
 
Because there were no modifications made to the cortical stage of the model, one might expect 
mean spectrum coherence to be identical between the two models.  However, there is a clear 
deterioration in all channels at later times in the results for the AN/IC periphery.  Because the 
system does not change, this may imply that the type of input fed in by the gammatone/LIN 
periphery tends to evoke more linear responses than the AN/IC output from the same mode.  Thus, 
these differences suggest spectrum coherence may speak more to the statistics of peripheral output 
than the actual computation of the cortical model.  Thus, a gammatone/LIN periphery may be 
reducing the audio signal to a form which is not transformed as much by the computation of the 
cortical model, suggesting an oversimplification of the perceived sound. 

 
 

Figure 9: Mean spectrum coherence of output from peripheral and output from cortical model 
across all 60 sentences.  Only results for excitatory populations of each area were computed.  

While these core areas show stark differences, these differences disappear in the subsequent belt 
areas of the models. 
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5.2.2 Pitch Estimation 
 
 
One of the strongest results from Zulfiqar et al. was the dual encoding of pitch across the four 
areas; they observed that the mean spectral activity of the four regions mirrored the estimated 
fundamental frequency of the sentence, and that the mean temporal activity of the Fast area 
correlated strongly with the contour of the estimated pitch over time.  Similar to their methodology, 
we used the YIN algorithm to obtain a pitch estimate for each sentence, an algorithm for estimating 
the fundamental frequency based off of the autocorrelation method, i.e. comparing subsections of 
a signal to find a match (Cheveigne and Kawahara 2002).  The AN/IC model demonstrated a much 
clearer spectral encoding of this estimate in the four areas than the gammatone/LIN model, 
especially in the core areas (A1 and R).  While the cortical model produced a local maximum near 
the estimated fundamental frequency, adding the AN/IC periphery made this spike much more 
obvious (Fig. 10).  Furthermore, while using a linear periphery does represent the fundamental and 
first formant frequencies relatively well, it is easy to see that any higher formants cannot be easily 
distinguished in any of the areas, whereas using a more realistic periphery preserves the second 
and third formant quite well. 

 
 

 
Figure 10. Spectral encoding of fundamental frequency of a sample sentence.  Results were 

similar for all sentences tested.  The gray histogram represents F0 estimates (as extracted by the 
YIN algorithm) and the magenta, orange, and purple histograms represent the first, second, and 

third formants respectively (as extracted by Praat). 
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6 Discussion 
 

6.1 Vowel Contrast 
 
 
 An immediate observation from the vowel responses in Figure 7b is that much richer 
information about the frequency content of a sound is processed by the cortical model with a more 
realistic peripheral model. Past a frequency of about 1 kHz, there is very little frequency 
information encoded in the cortical response when a gammatone filterbank periphery is used. We 
know, however, that information is available to the brain at higher frequencies because we used 
formant frequencies for vowels above 1 kHz to differentiate and understand them. So, it is much 
more reasonable that speech drives neurons tuned to frequencies much higher than 1 kHz in the 
auditory cortex.  
 Furthermore, at formant frequencies, for both the AN and the AN+IC BE peripheries, there 
is a greater difference in firing rate between vowels than there is for the original periphery. One 
can imagine that a greater difference in neuron firing rate between speech sounds allows the brain 
to more easily distinguish between them. In this way, the peripheral models containing AN and 
AN+IC BE processing are more successful at differentiating between vowels, a skill that the 
human brain can accomplish with ease.  
 There are a few properties of the AN periphery that lead us to conclude that it is less 
appropriate for use in the cortical model than the IC BE cell output. The first is physiological. The 
output of the auditory nerve goes through an immense amount of processing before that 
information is received by the neurons in the auditory cortex. Next, the vowel responses show us 
that formant frequencies do not fall as often near peaks in the response for the AN periphery as 
they do for the AN+IC BE periphery. We would expect that the brain uses a change in firing rate 
near formant frequencies to identify vowels, and so a successful model will also show distinct 
features at formant frequencies. For example, peaks for F2 and F3 are similar for the vowels /ae/ 
and /e/ only in the IC BE periphery outputs. These vowels are similar in F2 and F3, and so this 
makes sense. In this way the IC BE input to the cortical model best shows realistic responses to 
vowels. The outputs for the IC BE periphery in A1 and R areas also show peaks at low frequencies, 
which could show improved pitch encoding; pitch encoding is examined more closely with regards 
to sentence responses. 
 The trends described above are most noticeable in the A1 and R outputs, which is consistent 
with the design of the cortical model, since these areas are the “core” areas that receive direct input 
from peripheral processing. The trends of formant frequencies and pitch are not as well seen in the 
Fast and Slow areas (the second table of Figure 7). This is reasonable, since Zulfiqar and colleagues 
posit that these areas encode fine temporal structure and fine-grained spectral properties of 
auditory stimuli, respectively (Zulfiqar et al. 2020). 
 A limitation of this analysis is that the responses shown are for only one speaker for one 
utterance, and only passed through the model once. The AN model incorporates internal noise 
(Nelson and Carney 2004), so any analysis is of course dependent on the summary statistics of a 
large dataset, rather than individual results. 
 Future analysis will include processing a larger dataset of vowel recordings and quantifying 
dispersion of the results from each model and then comparing how well each approach preserves 
the differences between vowels.  Performance of vowel classifiers on the outputs of each model 
could also be used as a metric of distinguishability. 
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6.2 Sentence Response 
 
 
The strongest singular result of our model in response to connected speech is the improved ability 
to represent higher formant frequencies.  As shown in Figure 9, the spectral profile of the response 
in all four areas has a much richer shape, representing not just the fundamental frequency and first 
formant, but the second and third formant as well.  From a linguistic perspective, this is vital, as 
even a simple, steady state vowel is determined by at least the first and second formant.  Thus, it 
seems that embedding a more physiologically accurate model for the auditory periphery is 
necessary for linguistically relevant features of a sound to be encoded in this model of the auditory 
cortex.  This model lends further support to the idea that the nonlinearities present in the 
computation of the inner ear and brainstem play a key role in linguistic perception. 
 
 

7 Conclusion and Future Work 
 
 
With this work we aimed to improve the responses of a computational model for auditory cortex 
to speech sounds by prepending a more physiologically realistic model for pre-cortical processing.  
We approach this “improvement” from a normative lens of preserving the right information rather 
than one of physiological replication, as we do not have neurophysiological with which to draw 
comparison.  We observed a richer representation of higher frequencies in vowel responses, 
suggesting that an AN/IC periphery may better preserve the higher formants useful in 
distinguishing vowels.  When presented with more complex stimuli, an AN/IC periphery achieved 
a clearer spectral encoding of estimated pitch of the sentence than a gammatone/LIN periphery 
did, one of the key results of the original paper proposing the cortical model used, and it quite 
clearly exhibited a spectral encoding of higher formant frequencies of the speech, a result that the 
original model was completely unable to match. 
 Future directions can examine other permutations of these same models for AN, IC, and 
AC.  All experiments performed presented no inhibitory input to the cortical model.  Variations of 
whether the band-enhanced or band-suppressed populations of the IC are used as excitatory or 
inhibitory input can be tested.  The results presented here can be generalized by using a larger 
dataset and presenting summary statistics rather than sample outputs, but the principles that are 
exhibited in our results suggest that the use of physiologically accurate models for the auditory 
periphery are key to progress in the modeling of auditory cortex, especially in the context of speech 
perception. 
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