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Abstract 
 
Connectionist modeling (AKA neural network modeling, connectionism) is 
rapidly becoming a dominant descriptive and theoretical tool for the 
psycholinguist.  Below is a brief introduction to some of the terms and concepts 
used in connectionist modeling.  Connectionist models are no different than any 
other sorts of theories in cognitive science, they merely offer a new computational 
toolbox, or set of algorithmic constraints on models and theories of cognitive 
phenomena.  In this paper I review many of the important components of 
connectionist models and introduce some of strengths, pitfalls and caveats that 
casual readers and serious modelers must be aware of. 
 
Introduction 

 
If you’ve read past the abstract, you must have resisted the urge some linguists 
feel to put down the article after reading the word “connectionist”.  Thank you.  
I’d like to welcome you to our informal field by teaching you some of the lingo 
you’ll need to navigate.  I’ll try to avoid using the math that modelers love to 
flaunt and instead focus on the underlying concepts and architectures.  Hopefully, 
after reading this, you will be able to start reading modeling papers and 
understanding much of what is going on.  Moreover you may stop falling asleep 
at modeling talks.  If I’m lucky, you may even collaborate with psycholinguist to 
build your own models of linguistic phenomena.  Hopefully you’ll have enough 
understanding of the basic terms and issues to do all of these things after reading 
this paper. 
 
Throughout this paper I’ve tried to put most connectionist terms in boldface so 
that you can find particular concepts quickly by scanning.  Connectionism as a 
field grew out of work in neurobiology, computer science, electrical engineering, 
statistics, and cognitive psychology (and probably other fields), so there are often 
many terms that mean the same thing (depending on what your background is).  
In these cases, I have tried to provide all of the terms.  I’ve also tried to include 
terms and concepts that are not formally defined anywhere, but have proven 
useful to connectionists discussing their work over the years. 
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A common question that linguists have asked me is “what is a connectionist 
model?”  The answer to that question is surprisingly quite simple.  A 
connectionist model is really an algorithm for turning some input (which 
presumably maps onto something of psychological or linguistic interest) into 
some other output (which may map onto some data).  In this regard it is very 
similar to any other cognitive or linguistic model that has been implemented 
computationally.  Take, for example, an Optimality Theory Grammar.  An OT 
grammar turns a collection of phonological forms from Gen (the input) into the 
actual production (the output).  The only difference between this grammar and a 
neural network is that the kinds of computations we are allowed to use in 
creating the algorithm are different. OT prescribes one type of computation 
(constraint satisfaction), while connectionist models use computations that are 
very loosely based on the kinds of computations that neurons and populations of 
neurons might perform.  Under this view, connectionism is simply a set of 
(mostly) agreed upon guidelines for what sorts of algorithms are appropriate for 
describing cognitive behavior. 
 
Architecture 
 
All connectionist models are composed of two simple concepts: nodes (AKA 
neurons or units or cells) and weights (AKA connections or synapses).   
 
A node can be considered a highly idealized representation of a neuron. It has an 
activation (or firing rate ) that tells us how strongly that neuron is firing.  In a 
very simple case, a node might be assigned to a real world concept such as a 
specific phoneme, /b/.  It’s neighboring nodes may represent other phonemes, /d/ 
and /t/.  In this case, the activation of the /b/ node relative to the other nodes 
would tell us how strongly the system believes a /b/ was present in the input.  
Oftentimes the activation of a node will be simplified by saying the node is 
either on (firing ) or off (not firing , inactive).  Keep in mind that very few 
connectionist models have nodes with discrete activation levels—on or off 
simply refer to the node having a lot of activation (relative to the other nodes) or 
a little. 
 
Nodes are organized into layers (AKA arrays or vectors).  Each layer is a 
cluster of nodes that are [usually] functionally related.  For example, one layer of 
a network may consist of the group nodes that correspond to each phoneme; 
another layer may have nodes that correspond to words.   
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In any model, one or more layers is designated the input layer.  Stimulus from 
the outside world is received into the network via this input layer .  The stimuli  
consist of numerical representations of real world objects or stimuli.  When the 
modeler sets the activations of the nodes of the input layer to match one of these 
representations, the network has received that stimulus as its input.  The patterns 
of input activation may come from a corpus of text, a digitized waveform, or any 
other set of stimuli the modeler wishes.  Additionally, they could be manually set 
to arbitrary values if the modeler wishes to abstract away from real input 
(possibly the real input is too complex to illustrate the problem the modeler 
wishes to work with).  The set of input activation levels the modeler decides to 
use is called the training set.  Each item in a training set minimally consists of 
the activations for each input node in the input layer .  The training set will 
sometimes contain other information such as the expected value of the output 
nodes for each input.  This will be discussed when we talk about learning. 
 
Each network will also have one or more output layers.  The output layer is the 
cluster of nodes that will determine the network’s “behavior”.  The values of these 
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nodes are the values that we will attempt to relate to the empirical data that we are 
trying to evaluate.  For example in a network designed to categorize phonemes, 
the input layer might represent a digitized waveform, and the output layer 
would have a node corresponding to each phoneme.  The way in which the 
activation of nodes in the output layer is related to the empirical data or 
behavior is called the linking hypothesis (because it links models and data).  For 
example, for our phoneme categorization example, our linking hypothesis might 
be that the model will choose the phoneme with the most activation as the 
phoneme it heard.  I’ll talk more about linking hypotheses later. 
 
Layers of nodes that do not receive input or provide output are called hidden 
layers.  These layers compute some sort of intermediate representation (between 
input and output layers).  Many modelers dispense with the input, hidden, and 
output layer designations all together and simply refer to layers by what they 
designate.  The TRACE model (McClelland and Elman, 1986), for example has a 
feature layer, a phoneme layer, and a word layer, but none of them is 
designated the output layer.  TRACE, in fact, can use either phonemes or words 
as the output depending on the task at hand.  In models like these, one must think 
about the logical flow of information is a psychological sense if you wish to 
determine the input and output layers.  Many models are described simply as 2-
layer or 3-layer networks (or more).  A 2-layer network will necessarily have 
only an input and output layer.  A 3-layer network will have both of these plus 
one hidden layer.  A 4-layer network will have two hidden layers. 
 
In the remainder of this paper, whenever I refer to simply input or output, I will 
be referring to the entire input or output layers (i.e. the pattern of activations of 
across node in the layer).   
 
Often times, a layer of nodes is thought of as a set of coordinates in a 
multidimensional space.  This is easiest to visualize for a network of two nodes.  
The activation of the first node could be considered the X-coordinate.   The 
activation of the second node would be the Y-coordinate.  Then any particular 
pattern of activations across the two nodes can be thought of as a unique point in 
a 2-D coordinate system.  So if the input activations for the two nodes were .5 and 
.8, we could talk about the input as the single point <.5, .8>. 
 
Of course, when we move up to larger networks we won’t be able to visualize a 
16 dimensional space.  However, we can still talk about one, and this spatial 
metaphor is used frequently.  Under this metaphor, the input space would consist 
of all regions of the possible N-dimensional space that are used in the network 
(where N=number of inputs).  The output-space is the corresponding regions in 
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M-dimensional space (where M=number of output nodes).  People often refer to 
the dimensionality of a space (which is simply the number of nodes).  Then when 
information is passed from an input space of high dimensionality to an output 
space of lower dimensionality, the information is undergoing dimensionality 
reduction—it must be compressed (and some information invariably lost) in 
order to “fit” in the lower dimensionality space.  This forces the network to make 
group some inputs together and discard others according to the correlations it 
finds in its inputs.  They types of categorizations it makes may be of ultimate 
interest psychologically.   
 
This way of describing network behavior spatially provides a convenient way of 
describing a network.  When activation patterns change, we can talk about the 
network moving to a new point in the input space.   Moreover modelers often 
speak of learning (which I will discuss shortly) as a search through the output 
space.  Finally, dimensionality reduction is often thought of as a form of 
information compression (as a network may have to represent 3-D information, 
for example, in only two dimensions).  Dimensionality reduction is also a 
common concept used to describe statistical techniques such as factor analysis, 
clustering, and multidimensional scaling (if you don’t know these terms, that’s 
fine, I merely throw them out to show that the analogy can be helpful in relating 
neural network computations to other types of computational tools). 
 
In a network nodes are connected to each other by weights (AKA synapses, 
connections).  Each weight represents the amount of activation that can be 
passed by one node to another.  If an input node is highly active and it has a 
strong connection to an output node, that output node will also be highly 
active.  If it has a weak connection that output node will not be highly active.  
We’ll go over the details of this in a moment.   
 
The set of all weights between two layers is termed the weight matrix (for 
reasons we’ll see shortly).  When a model is built, the weight matrix often starts 
as a matrix of small random numbers (as we will discuss, it will be modified later 
by learning).   
 
Weights can either excite (make active) or inhibit (make inactive) the nodes they 
connect.  Excitatory weights will cause a node to become more active if the 
nodes that connect to it are active.  Inhibitory weights will cause a node to 
become less active if the nodes that connect to it are active. 
 
Weights that pass information from input to output nodes (or in that direction 
between hidden nodes) are considered feed-forward connections.  Weights that 
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pass information backwards 
from output nodes to input 
nodes (or in that direction 
between hidden nodes) are 
considered feedback 
connections.  Bidirectional 
weights pass information both 
ways.  Weights that connect 
units within a layer are 
considered lateral connections.  
The most common use of 
lateral connections is lateral 
inhibition  in which nodes 
within a layer attempt to turn 
each other off.  The result of this process is that a few nodes have all the 
activation and the others have none. 
 
Consider the example network in figure 2.  This network consists of two input 
nodes and two output nodes (a 2x2 network), fully connected (each input nodes 
is connected to each output node) and feed-forward.  The activations of the input 
nodes have been set to 2 and .5 by the modeler. 
 
To compute the values of the output nodes, we will use some function of the 
inputs and the weights.  This function is called the activation function. 
 

outputtop = f( inputtop, inputbottom, weighttop->top, weightbottom->top) (1) 
 
The simplest activation function is the linear activation function.  Each output 
node is simply the sum of the activation each input node multiplied by the 
corresponding connection (weight) to that output node. 
 

outputtop = inputtop*weighttop->top  + inputbottom*weightbottom->top (2) 
outputbottom = inputtop * weighttop->bottom  + inputbottom * weightbottom->bottom  

 
This can be generalized to: 
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We can simplify this even further with some linear algebra.  Let Output (with no 
index) become a vector of all the output activations, and Input (with no index) 
be a vector of all the input activations.   
 
 Input  =  [Inputtop   Inputbottom] = [2   .5]    (4) 
 Output =  [Outputtop Outputbottom] 
 
Now let W be defined as a matrix where the row indicates the index of the input 
node (in this case, the top node would have an index or row of 1 and the bottom 
would have an index of two), and the column indicates the index of the output 
node.  The value at each position indicates the connection strength or weight. 
   

W =  [weight1,1 weight1,2  ]     (5) 
  [weight2,1 weightb2,2]  

 
W =  [weighttop->top  weighttop->bottom ] 

  [weightbottom->top weightbottom->bottom ]  

 
W =  [ .3   1.5  ] 

  [ 1      .1  ] 
 
Then by the definition of matrix multiplication (which essentially says: for each 
output node, do equation 3, and concatenate all the results into a vector) we can 
simplify the whole thing into. 
 
 Output = Input * W       (6) 
 
where ‘*’ indicates matrix multiplication, and Output and Input are vectors, W is 
a matrix.  As some one to explain the linear algebra to you, and you will see it’s 
not too complicated.  You should recognize, thought, that equation 6 and equation 
3 are doing the same thing, as you will often see it notated both ways. 
 
All of this stuff so far has been to describe the linear activation function.  This 
activation function says that as you give input activation to an output node (as a 
function of the weights) the output activation will increase proportionally.  This 
isn’t the only possible activation function, though.  As equation 1 implies 
virtually any function could be used (although modelers tend to limit themselves 
to simple, understandable functions that may be neurologically plausible).   
 
The most common nonlinear activation function (i.e. not equation 3) you will 
see is the logistic activation function.  Without going into the math much, the 
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Figure 3: The logistic activation function.  For any input
activation to an output node, the logistic function outputs a
value between 0 and 1.

logistic activation function serves to truncate the possible values of the output 
activation to a value between 0 and 1.  If the sum of inputs*weights is high, the 
output node will equal 1.  If that sum is low, the output node will have an 
activation of 0. 
 
Non-linear activation functions are crucial to the success of multiple-layer 
networks because it has been shown that for any network with more than two 
layers that uses a linear activation function, a two-layer network can be built 
that performs equivalently.  Essentially, if you want to reap any advantage out of 
having more than two layers, you have to use a non-linear activation function.   
The logistic function is a particularly good one, since the logistic function is 
what is known as a basis function.  A basis function is a function that can 
approximate any other function if you add enough of them together (the Gaussian 
curve, and the sine wave are other examples of basis functions).  So, if you think 
of a bunch of hidden units with logistic activation functions a network could 
approximate many other functions by simply adding them together.  Because of 
this, neural networks have been termed universal function approximators.  
Although often connectionist models have been associated with non-modular 
(or interactive) theories of processing, and tabula-rasa, statistically-oriented 
theories of learning, as universal function approximators, connectionist 
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models can instantiate any sort of theory and should not be pigeon-holed into 
these particular lines of thought. 
 
As I mentioned previously, layers of nodes are often thought of as coordinates in 
a multidimensional space.  Under this view, the weight matrix then performs a 
remapping of a coordinate in N dimensional space to one in M dimensional 
space (where N is the number of input nodes, and M is the number of output 
nodes (see figure 4 for an example and explanation of this). 
 
Representation 
 
It is often useful to classify a model (or sometimes just a layer of a model) 
according to how it represents real world information.   
 
A localist representation is one in which each node has a label of some kind, and 
when that node is active, it is in a sense saying “I think my label is correct.”  An 
example of this is a layer of cells in which each node corresponds to a different 
phoneme, or one in which nodes correspond to various people.  Often localist 
nodes are derogatorily called Grandmother Cells, after a famous thought 
experiment in which someone asked “What would happen if your grandmother 
cell was damaged?  Would you be unable to recognize your own grandmother?”  
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Figure 4: A neural network trained to perform a dimensionality reduction and the 
corresponding “geometric” representation of that reduction.  In this case, the network is 
mapping the points in two dimensional space to a point in one dimensional space (along the 
dotted line).  The values of the weights determine the equation of the line.  Of course, not all 
networks perform a dimensionality reduction.  Some keep the same dimensionality (merely 
shuffling the points in a predictable way), others will increase the dimensionality.  The main 
point, though is that the weight matrix serves to perform this “remapping”.
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Although a trifle silly, this question does raise the important point that localist 
representations are very susceptible to damage.  If your only cell that recognizes 
/b/ is damaged, your network can no longer recognize that sound any more.  Many 
other people have pointed out, however, that a node doesn’t necessarily stand for 
one neuron, but that it could stand for a whole population of neurons.  Under this 
view, localist networks could easily survive damage. 
 
A distributed representation represents information across several cells.  
Sometimes this is completely arbitrary .  The word “boy” for example may be the 
pattern [1 1 0 1 0 0] (for a layer with five nodes), while “botch” is [1 1 1 0 1 1].  
Other types of distributed representations may assign smaller units of meaning 
to individual nodes, although the interesting meanings are distributed across them.  
In our previous example, if the first cell responds to a “b”, the second to an “o” 
the third to a “t”, the fourth to a “y” and the fifth and sixth to a “c” and “h” 
respectively, our representation of each word is still distributed , but each unit is 
now meaningful as well.  Distributed representations are particularly valuable 
in that they can withstand damage well (if you knock out a single node, there may 
be enough information remaining in the other nodes to maintain the 
representation).  They also implicitly encode similarity.  In the example above, 
“boy” and “botch” are similar in that they both share the first two letters.  As 
such, their distributed representations share two active nodes.  Because of this 
similarity encoding, distributed representations can often generalize patterns 
they have seen to novel ones. 
 
Another type of distributed representation is the topographic map (AKA 
population code).  In this scheme, a layer of cells represents the value of some 
continuous value by location.  For example, in a layer of 10 cells that respond to 
sound frequency, the left-most cells may respond highest to low frequencies and 
the right most to high frequency.  You can then recover which frequency the cells 
heard by looking at which cells fired.  Topographic maps do not always 
represent their inputs linearly—they may have a lot of cells devoted to low 
frequencies and only a few to high frequencies, for example (this is what the 
output of a Kohonen network, which we’ll read about shortly, looks like). 
 
On some level, the debate over representation is a little pointless.  It has been said 
that “one level of representation’s localist representation is another level’s 
distributed representation”.  The two representational schemes are not terribly 
different and really depend on the level of description you wish to use and the 
way in which you wish to describe your model’s behavior and architecture.  This 
is not say that it is not important to have a good understanding of the way in 
which your model represents information, just the there are no hard lines between 
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distributed and localist representations, and one should not worry too much about 
the debate over them. 
 
Learning 
 
As you may have noticed, most of the interesting computational work in a neural 
network is done by the weights. At this point you are probably asking yourselves: 
how do I get the weights?  That will be the topic of the next section: learning.  I 
intend to keep to the more abstract conceptual level, however, an excellent 
description of the math behind the various learning systems can be found in 
Rumelhart, and McClelland (1986) and McClelland, and Rumelhart (1986).  A 
good comparison of work in developmental psychology with connectionist 
learning can be found in Elman, Bates, Johnson, Karmiloff-Smith, Parisi and 
Plunkett (1992) 
 
The connection strength associated with each weight is usually set by a learning 
process (although in some cases, such as TRACE, they can be set by hand by the 
modeler to implement a specific theory).  Each network has a learning rule that 
essentially tells the network how to modify its weights at any given point.   
Learning rules change the weights as a function of the activations of the input 
and output units, the value of the weight itself and possibly some error signal—
how close the actual output values are to the target output values (the ones you 
want the network to output).  All learning rules have a component called the 
learning rate that determines how fast or slow the network can change its 
weights (essentially how much the network can change as a result of a single 
input). This gradual modification in weights leads to gradual change in the 
network’s performance.  The challenge to the modeler is to use learning rules 
appropriate to the task the model is given so that this change is an improvement.   
The process of modifying the weights over time is learning (also training, or 
simply running a model). 
 
Regardless of the type of learning rule used, networks can be trained in two 
ways: batch learning, and online learning.  In batch learning, the modeler 
presents the each item in the training set to the network and computes it’s 
corresponding output activations.  The weights are not changed until after the 
network has seen all of the possible input/output pairs when they will be 
modified using a learning rule.  This forces the learning rule to consider all the 
input the network will ever see before changing any weights.  The network will 
probably process the entire batch multiple times (each time is usually called an 
epoch, though this term is often misused in the literature).  Batch learning is 
often considered implausible (e.g. it seems clear that children do not wait until 
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they have heard every English sentence before learning to talk), but has the 
advantage of preventing a network from getting sidetracked by a single weird 
input. 
 
The more common training scheme is online learning.  In this scheme, the model 
cycles for multiple iterations (AKA generations and sometimes, confusingly, 
epochs).  At each iteration, a single item from the training set is chosen (either 
randomly or by fiat), and the activation of each input node is set according to 
that item.  Output activation is computed via the weight matrix, and the weights 
are modified via the learning rule.  This is then repeated again and again until the 
modeler decides to stop.  Usually the weights settle (stay at approximately the 
same value from iteration to iteration) after some time—this is a good place to 
stop training. 
 
In most models, the model starts its “life” with a random weight matrix 
(essentially, each weight is a randomly selected value, usually within a small 
range).  This ensures that the model does not start its life with any preknowledge 
of what it is to learn.  It also is essential for many of the learning algorithms 
because initially, each output node will be biased differently in response to an 
input (if the network started out with a weight matrix consisting all the same 
number, each output node would be equally biased towards everything and 
learning would be very difficult). 
 
So what kinds of things make up the learning rule?  How does one know what to 
change the weights to?  Modelers have been working on this issue for quite some 
time and have arrived at two broad categories of solutions: supervised learning 
and unsupervised learning.   
 
Supervised learning rules change the weights as a function of a teaching signal 
which is provided by the modeler to tell the network what it should be outputting 
in it’s output layer.  This teaching signal is often considered part of the training 
set.  For our dinky 2x2 network, the modeler might provide a training set such as 
the one below: 
 

If the network sees…     …it should output 
  [ 1 0 ]    [1 0 ] 
  [ 0 1 ]    [1 0 ] 
  [0 0 ]    [0 1 ] 
  [1 1 ]    [0 1 ] 
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Then at each iteration, the actual output can be compared with the target output 
(the output provided by the teaching signal) and each weight can be adjusted 
according to whether it was contributing to the correct output or not.  This 
comparison is usually in the form of an error signal, the difference between the 
target and actual output. 
 
The delta rule (AKA the LMS rule ) and back-propagation are two commonly 
used forms of supervised learning.  The delta rule works very similarly to what 
I’ve described above.  However, the delta-rule does not work very well for 
multiple-layer networks (unless you have target values for the activation of the 
hidden units).  Back propagation is designed to send the error signal back 
through the hidden units (by transforming it via the weight matrix and a lot of 
messy calculus).  Thus back propagation can be used with networks of any size.  
Since a complete description of this requires calculus, I will wave my hands a bit 
and move on to the next section.  However, I direct the interested reader to 
Rumelhart, Hinton and Williams (1986).  It is important to note, that back 
propagation is not widely considered to be neurologically plausible as a 
neurological mechanism for passing error information back through multiple 
synapses has not been found, and the, as I’ll discuss later, the source of the error 
signal itself can lead to biological implausibility.  
 
When doing supervised learning, modelers often want to talk about how close 
their model is to the target output.  The most common way to do that is to 
compute the Mean Square Error (MSE).  This is very simply defined.  For any 
given input, compute the squared difference between each output node’s 
activation and its target activation (by squaring this difference, we make each 
difference positive, so every node’s error adds to the total error).  Now take the 
mean of these numbers.  That is the MSE.  Since this only tells you how good the 
model is doing on a single input pattern, many modelers will compute the MSE 
for each member of the whole training set to see how the model is doing.  MSE is 
also a nice way to determine how long to train the model—simply present inputs 
to the model and run your learning rule until MSE is below some arbitrary cutoff 
point. 
 
Computing a single value for the performance of a network prompts many 
modelers to speak of the error-space or the weight space.  Consider a network 
with only two weights.  If we look at all the possible values for these weights and 
compute the MSE for each combination, we could plot a three dimensional error-
landscape where the X axis was the first weight, the Z axis, the second weight, 
and the Y axis (vertical) the MSE.  Supervised learning algorithms then simply 
search this error-space for the point (combination of weights) with the lowest 
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MSE.  They start from a random point (remember our weights are set to random 
values initially) and wander until they can no longer reach a lower point.  In doing 
this search, a model may fall into what is called a local minimum.  A local 
minimum is simply a point in this error space that is lower than all of its 
neighbors, but may not be the absolute lowest point.  Training the same model 
from several different starting points (random weight matrices) is a good way to 
escape this potential pitfall, as you are more likely to be sure that the final state is 
an absolute minimum. 
 
A classic back-propagation model is the autoassociator (AKA the 
autoassociative network).  This network is a three layer-network with the same 
number of input and output nodes and a smaller number of hidden nodes (thus 
the network is performing a dimensionality reduction as activation flows from 
input to hidden nodes).  The network is trained to repeat whatever input it is 
given.  This may seem trivial, but this is in fact an interesting problem given the 
dimensionality reduction.   
 
For example, an autoassociator may represent a time-slice of a spectrogram by 
100 nodes, but only have 4 hidden nodes through which to send that input to the 
output nodes.  After computing hidden unit activations, it will need to recover 96 
dimensions to go from hidden to outputs.  In order to do this, of course, the 
learning rule must pick 4 dimensions to represent the input that are particularly 
important (account for a lot of the variance in the input).  If this model is able to 
learn to perform its task, it may be very interesting what sorts of hidden unit 
representations it learns.  In this particular task, we might expect the hidden 
units to approximate acoustic features. 
 
Autoassociators bring up two very important concepts concerning back-
propagation networks.   
 

1) If you want to use your model to evaluate learning (ignoring for the 
moment issues about whether propagating the error signal is 
neurologically plausible), you must evaluate the plausibility of the 
teaching signal.  It may be obvious that the teaching  signal is doing 
a lot of the work in back-propagation networks.  Since you could train 
a network to do virtually anything, given a good teaching signal, it is 
important to evaluate whether or not the signal you use is 
psychologically and/or biologically plausible.  A word recognition 
network that is trained on acoustic input and told what the word is for 
each sound pattern is not very plausible, as real human babies don’t 
generally have access to this.  An autoassociator, however, does have a 
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plausible teaching signal, since brains probably do have access to their 
inputs.  However, if you are not interested in learning itself, but rather, 
on whether or not a set of inputs are learnable, the plausibility of the 
teaching signal is not as much of an issue. 

2) Hidden unit representations are important.  In a lot of cases, (such as 
the autoassociator, they are the only interesting results.  It is crucially 
important to evaluate what your hidden units are paying attention to in 
the input.  This, of course, can often be difficult or even impossible, 
particularly in cases where the hidden units seem to represent inputs in 
arbitrary distributed representations.  Often, however, individual 
hidden units will have some meaning that may be interesting.  
Evaluating what sorts of inputs the hidden units respond to can be very 
difficult.  The best way is to treat the hidden units as a psychological 
experiment.  Present them with various inputs that you have varied 
systematically to test one or more hypothesis.  Then try to find out if 
the activation of certain hidden units (or groups of units) can be 
predicted by those hypotheses. 

 
Unlike supervised learning, unsupervised learning requires no target values 
for the output—there is no right or wrong answer.  Rather, weights are modified 
as a function of the input and output activations only.   
 
One of the most common unsupervised learning rules is the Hebb rule, 
proposed by Donald Hebb in the late 1940s.  Hebb (1948) actually proposed this 
rule long before we knew anything about neural networks (computational or 
biological) and it turns out to have been very useful in the computational literature 
and also has a close physiological correlate in a phenomena called Long Term 
Potentiation or LTP (that is to say that real neurons actually behave this way).  
Although some people use unsupervised learning and Hebbian learning 
synonymously, the strict definition of Hebbian learning states that if an input 
node and an output node are simultaneously active, the strength of their 
connection increases.  For example: 
 
 Wxy = Wxy + Ix*Oy       (7) 
 
Here, if either I or O are equal to zero, there will be no change in weights.  If they 
are both active, however, W will be increased.  Since we can’t have weights 
increasing indefinitely, however, many modelers will include a weight decay 
term that says that if the nodes are not simultaneously active to decrease the 
weights.  Of course we will also want to include a learning rate (which we will 
abbreviate as ε) 
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 Wxy = Wxy +  ε(Ix*Oy - Wxy)      (8) 
 
Here if I and O are active, we will increase W by a small amount (the old value of 
W multiplied by the learning rate).  If they are not we will decrease it by a small 
amount.   
 
Less common than Hebbian Learning is AntiHebbian Learning in which if an 
input and output node are simultaneously active, their connection decreases.  Of 
course, there are many unnamed variants of these two supervised learning rules, 
but they are similar in that they do not depend on a teaching signal. 
 
One common scheme for using unsupervised learning is competitive learning 
(or winner-take-all learning, see Rumelhart and Zipser (1986)).  In this scheme 
before computing the weight change, the modeler sets the output node with the 
highest activation to one and all the others to zero.  This is a simplification of a 
lateral inhibition process.  Then the weights are changed according to a 
Hebbian or other unsupervised rule.  The result of this sort of learning is that the 
model is able to find categories in the input (i.e. it will devote one output node to 
one category of inputs in the training set and a different output node to the others).  
 
Another common scheme is the Kohonen (1982) network (or Self Organizing 
Feature Map, SOFM).  A Kohonen network works very similarly to a 
competitive learning network, except that rather than exciting only the winner 
in the output layer, the winner and a number of it’s neighbors are excited 
together, before applying the learning rule.  The result of this is a distorted map 
of the input space in the output space in which regions of the input space that 
occur frequently in the training set have lots of output nodes devoted to them and 
other regions have fewer. 
 
Hebbian learning has also been used in Pattern Completion Networks (famous 
examples are the Brain-State-in-a-Box and the Hopfield Network).  These 
networks have only a single layer that serves as both the input and output layers.  
All of the nodes in this layer are connected to each other (laterally) and these 
weights are modified with Hebbian learning.  The model is trained on a series of 
patterns until the weights settle.  Then afterwards, the model can be given a 
partially complete pattern and will be able fill in the rest.  For example, a four-
node pattern completion network may be trained on the following activation 
patterns 
   

[1 0 1 0] 
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  [0 1 0 1] 
 
With training, it will learn that when node #1 is on, node #3 should also be on, 
and that when node #2 is on, node #4 should also be on.  So when presented with 
[1 0 _ 0], it will output the correct pattern, [1 0 1 0]. 
 
Noise 
 
When building connectionist models, we can make them pure and pristine, perfect 
examples of what cognition should be.  However, this is rarely a useful 
generalization since everything we know about the brain suggests it is as noisy as 
a debate on Chomskian language acquisition.  To counter that objection, people 
often add noise to a system.  This may seem abstract and weird but all they are 
doing is adding small random numbers to something.  Sometimes this is added 
to the input layer before outputs are computed, sometimes it is added when the 
outputs are computed, and sometimes it is added to the weights.  Using a weight 
matrix of small random numbers is another extremely common method of 
adding noise (although this is usually considered adding noise to the learning 
mechanism, without affecting the processing).  Just know that adding noise is 
simply injecting a little randomness into the model somewhere.   
 
Noise doesn’t always degrade performance.  Elman and Zipser (1988), for 
example, found that if they added noise to a speech recognition network it 
actually learned better, because the noise forced the network to create “noise-
independent” representations of the speech.  These representations were more 
useful in generalizing across speakers and contexts. 
 
Another key point regarding noise is that once you add some to a network, your 
model is no longer deterministic.  That is to say that every network is going to be 
slightly different (because you will be adding different random numbers to each 
instantiation).  Because of this, you are not guaranteed that every network will be 
able to solve the problem, so it is a very good idea to run several different models 
under different noise conditions to determine how your model fares against noise.  
Conversely, when you read a paper in which noise is added to a model (even if it 
is just in the initial weight matrix), it is important to note whether the author ran 
the model several times.  Otherwise, the possibility is open that he or she simply 
got lucky the first time (or didn’t report the 200 models that failed).  A network 
that generally solves the problem every time in differing levels of noise is said to 
be robust against noise.   
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Recurrence 
 
Cognition often must unfold over time.  In order for networks to capture this, 
recurrence is often added.   Recurrence generally means that a layer’s 
activation is in some way influenced by that layer’s activation at a previous 
time.  Some recurrent networks will have layers (such as an output layer) that 
are a function of themselves (at previous times).  For example: 
 
 Outputtime=t = f(outputtime=t-1,inputs…)    (9) 
 
In the simplest case of this, the network may consist of only a single layer (which 
is both input and output) and simply connects to itself over time.  The Pattern 
Completion Network discussed earlier is one such example.  Recurrent 
networks usually take time to process a single input (as activation flows back 
and forth between nodes).  Often, giving a recurrent network an input and 
allowing it to process it is called running the network (although this can often 
refer to training as well). 
 
Other networks may have layers with more indirect influences on themselves.   
The TRACE model (McClelland and Elman, 1986), for example, is a type of 
recurrent network known as an interactive activation model (or IAM ).  In this 
model, activation starts at the feature level and is passed to the phoneme level and 
then to the word level.   The word level then passes activation back down to the 
phoneme level (via feedback) connections, so that the phoneme activation at time 
2 is a function of both the feature input and information from the word level 
(which of course is determined by the phoneme level at time 1).  This process 
cycles over and over again through time and predicts a number of the results 
about the temporal dynamics of speech perception. 
 
Another famous recurrent network is Elman’s (1990) simple recurrent network 
(or SRN).  These networks have been used to model all sorts of sequential 
behavior (of which language is probably the most interesting).  They use back-
propagation for learning and are trained to predict the next input they will 
receive.  For example, if they are learning sequences of words such as “the dog 
smiles”, and “the boy eats” at any one instance of “the” the SRN will be trained 
on the very next word (such as “dog”).  Over time, this SRN should report that 
“boy” and “dog” are highly likely (active) after hearing “the”, but “eats” and 
“smiles” are not. 
 
Simple Recurrent Networks have a very simple structure that has turned out to 
be quite powerful.  Activation starts in the input layer and flows into the hidden 
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layer.  Activation in the hidden units is not simply computed from the input 
layer alone, rather it is equal to the input layer multiplied by its weights plus the 
activation of the old hidden units (at the last time-step) multiplied by some other 
weights.  Output activation is computed from these hidden units.  Thus, when 
dealing with temporal stimuli (such as language), the SRN you will need to be 
basing outputs on not only the current input (for a word, for example, the current 
input might be a phoneme), but also on some of the previous inputs (the previous 
phonemes). 
 
Although SRN’s are trained using ordinary back propagation, many other 
recurrent networks are trained using a learning algorithm called back 
propagation through time.  In this algorithm, the network is literally unfolded 
over time so that the output layer at time 1 will be one physical layer of the 
network and the output layer at time 2 will be treated as an independent second 
layer of the network (see figure 6).  The network can then trained as a regular old 
multi-layer network and the changes to all the weights (remember since each layer 

Input Layer

Hidden Layer = Input*Win + 
Context *Wcontext

Context Layer=Previous 
Hidden Layer (at time t-1)

Output Layer: trained to predict 
the next input.

Learnable
weights

Learnable
weights

Learnable
weights

Hidden 
Activation copied

Figure 5: A simple recurrent network.  The network is trained to predict the next 
output.  At each iteration, activation in the hidden layer is computed from the input and 
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of nodes really consists of the same nodes, each weight matrix is really the same 
weight matrix) will be combined to compute the final weight changes. 
 
Genetic Algorithms 
 
One emerging technique in connectionist modeling is the application of genetic 
algorithms to modeling.  These algorithms seek to “breed” networks by using a 
technique reminiscent of biological evolution.  Essentially, each network is 
assigned a genome that records its properties (such as the number of hidden units, 
the learning-rate, or the values of the weights).  The most common scheme for 
encoding this genome is to use a string of bits (one or zeros).  Each group of bits 
or gene (maybe the first 10, for example) will encode (in base-2) the value of 
whatever parameter that gene represents. 
 
Once the form of the genome is determined, a large number of networks will be 
generated by creating genomes at random.  These networks are all trained, and 
after they have all been run their fitness function is evaluated.  This function 
essentially tells the algorithm how good the network did at accomplishing its task.  
The next generation of networks is then created by combining the genomes of the 
networks with highest fitness values.  Sometimes mutations are allowed to creep 
in by randomly changing one or more bits of the genome.  There are literally 
thousands of different mechanisms for evaluating fitness, organizing the genome, 
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computing the genomes of the next generations, and having mutation.  I direct the 
reader to Mitchell (1999) for a good introduction to them.   
 
There is nothing mathematically special about genetic algorithms.  They simply 
form another class of search tools for fitting a model to a data.  Other classes 
include learning rules like Back Propagation or statistical optimization 
techniques like Maximum Likelihood Estimation.  The reader should bear in 
mind that among these optimization tools, genetic algorithms are the most poorly 
understood, and may not be the most efficient (they will take longer to solve the 
problem than other techniques).   
 
Genetic algorithms are popular mostly because of the compelling (to some 
people) biological analogy they provide.  However, a close look at this analogy 
suggests they may not be as compelling as many people think.  Researchers have 
used genetic algorithms to set the weights of a network as well as to determine 
features of the architecture (number of nodes, connectivity, learning rule, etc..).  
However, if you accept the majority-view that weights encode learned 
knowledge, it is hard to accept the evolutionary analogy for genetically 
determined weights as we have yet to find evidence for inherited knowledge.  
Moreover when genetic algorithms are used to determine the architecture of a 
model it is often extremely difficult to understand how a model is solving a 
particular task and how the genetic algorithm arrived at that solution.  Because of 
this, such models are not good instantiations of a theory—since the theorist did 
not determine how the model processes information, “evolution” did—unless 
your theory is a theory about evolution (and then you run into the problem that the 
model of evolution in most genetic models is quite bare).  I am not trying to say 
here that Genetic algorithms are useless.  They do have their place in 
connectionism, but we must exercise caution in building them (and reading about 
them) to be sure that we are saying something interesting, interpretable and new 
about cognition.  To really achieve any utility we must constrain the algorithms to 
the point where we can understand the output. 
 
Damage and Lesions 
 
A growing body of literature has begun to examine what happens when a network 
is damaged.  This has been particularly fruitful in language research as it is often 
useful to compare the output lesioned network with that of an aphasic.  Much 
like the use of noise in connectionist networks, this lesioning a network is a 
concept that is much less complicated that it might seem. 
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Researchers have come up with two major ways of damaging a network.  The first 
is simply to remove some connections (weights) between nodes by setting them 
to zero permanently.  The second is to remove one or more nodes (typically 
hidden units).  In both cases, people have looked at damaged networks in two 
ways.  Often they will simply compare their performance after the damage with 
real data from patients.  Other times, after receiving the damage, the network will 
undergo some more training as a simulation of recovery.  This is particularly 
interesting in the case where hidden units are lost (in an autoassociator, for 
example) as this asks the question of whether the network can successfully adapt 
to having fewer dimensions with which to represent its inputs.   
 
As I mentioned previously, the way in which damage is dealt with is one way in 
which localist and distributed representation schemes differ since distributed 
representations can deal with it more gracefully.  Most networks exploring the 
effects of damage use distributed representations for this reason. 
 
Discussion 
 
I’ll prewarn the reader that as I attempt to sum-up this article, my discussion is 
likely to turn into a personal pulpit for how connectionism should be done right.  
Other authors disagree with me of course, as many of these issues are either under 
active debate and those that aren’t have simply not yet surfaced as dominant 
issues in the literature (although I predict that they may soon). 
 
Connectionism has rapidly become a dominant tool for expressing and 
quantitatively modeling theories about psychological and neurological 
phenomena.  Its use is growing in linguistics and it is our hope (on the 
psychological side of the fence) that more linguists will begin to add it to their 
theory building toolboxes.   
 
It has been shown that given enough hidden units and enough layers of hidden 
units, back-propagation networks can learn to solve any problem (whether or 
not they can help my love life is a different story…).  As a result of this, when 
evaluating network models we need to determine a lot more than whether or not 
the model does the task, but also things like  

1) Is the structure of the model neurologically plausible?  Does the model 
perform computations that real neurons could not possibly do? 

2) Are the posited input and output representations psychologically and 
neurologically plausible?  A model that builds syntactic trees and is 
given parts of speech may not be all that interesting (unless we have a 
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good model of part-of-speech tagging), since it is unlikely the 
syntactic processor is simply given these… 

3) What feature of the model allows it to solve the problem?  How does it 
solve it?  

4) Does the time-course over learning and/or processing match the same 
time-course in humans?   

5) And most importantly, what is the linking hypothesis between the 
model and the data?  Models do not output eye-movements, or button-
presses or EEG waves or grammaticality judgments or reaction times.  
Whenever we relate model output to actual data, we must form some 
linking hypothesis as to how this relationship holds.  It is crucial that 
this be made explicit and that it be well reasoned.  Additionally, this 
linking hypothesis is just as important a part of theory building as the 
model itself: the same model with different linking hypotheses can 
often yield strikingly different results. 

 
When building a model, one needs to keep similar issues in mind.  Although there 
is a large engineering literature that focuses on building models with the single 
goal of solving a particular problem, for the most part, connectionist networks in 
psycholinguistics and linguistics are built to instantiate a theory of language 
processing or learning (or some other aspect of language).  In these models, there 
are a number of decisions to be made, and the best modelers will make these 
decisions on the basis of the theory they are trying to instantiate. 

1) Localist or distributed representation?  If a goal is neurological 
plausibility, distributed representations may be preferred (as 
grandmother cells have not yet been found in the brain) however a 
topographic map may be even better.  If the goal is to relate output to 
discrete experimental responses, then maybe a localist representation 
will make it easier to do that. 

2) What is the goal of learning?  If you wish to model the time course of 
development or acquisition, maybe a more neurologically plausible 
unsupervised scheme is best.  However, if you merely wish to show 
that a particular categorization or mapping is learnable from the input, 
a supervised learning rule may suffice.  This distinction is not very 
clear-cut in the literature (many developmental arguments have been 
made with back-propagation), but it is important to keep in mind 
when building the model.  If you do use a supervised learning rulȩ 
what is the basis of the teaching signal?  Could it arise in real life with 
real brains/minds?  Maybe you aren’t interested in learning at all, but 
rather, are more interested in exploring processing mechanisms.  Here 
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you may even consider setting the weights manually, or with a genetic 
algorithm . 

3) Are you striving for a completely neurologically plausible architecture 
or is an abstraction enough?  The answer to this can often constrain all 
the architectural choices you might need to make. 

 
Because of the power inherent in connectionist networks and because they are 
often as opaque as the cognitive system they are attempting to model, several 
cautions must be exercised.  Models must be developed to implement specific 
theories, and a specific linking hypothesis must be formed linking the model 
with the data.  The architecture of the model should be grounded in good 
linguistic and psychological theory and should be tied to the theory we wish to 
instantiate.  We should make every attempt to understand how a network solves 
the task, not just that it solves it, constraining our architectures toward this end if 
that is necessary.   
 
Finally we should systematically explore the models we develop in a style similar 
to that of good psychological experimentation. We should always compare 
multiple instantiations of the same model.  The effect of different sources and 
levels of noise should be systematically explored.   Modelers should test the 
architecture of the model by looking at the effects of individual components of the 
network (e.g. running a network both with and without lateral inhibition).  Lastly, 
models should be developed so that they can be directly compared to other 
models of the same phenomena.    In the long run, only by combining these 
cautions with knowledge of the neuroscience, mathematics and psychology 
behind connectionist modeling will it ultimately prove useful as a tool for 
conceptual understanding and theory testing. 
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