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Abstract

When the velum lowers during vowels, the velopharyngeal port is opened,

and there is acoustic coupling between the nasal cavity and the main vo-

cal tract, giving rise to a distinct acoustic quality which we call nasality.

Nasal coupling results in energy losses at low frequencies, damping of oral

formants (especially F1), and introduction of nasal formants corresponding

to the resonances of the nasal cavity and sinuses. These spectral modifica-

tions are gradient, increasing with degree of velar lowering; this relationship

suggests that velar position may be recovered from the acoustic signal by

measuring the degree of nasality in the vowel. However, the acoustic effects

of nasalization vary not only with velar position, but also across different

speakers and vowels, making it difficult to isolate an acoustic dimension cor-

responding to nasalization. This thesis presents a methodology for acoustic

measurement of nasality in vowels which attempts to overcome this con-

textual variability by a normalization procedure. The measuring technique

is implemented in an automated measuring system, which is trained on

a phonetically balanced set of words recorded from a particular speaker

to generate a speaker-specific model. The model specifies the parameters

with which to measure nasality for the speaker, the contextual variabil-

ity of those parameters which may be subtracted for normalization, and

the contributions of the parameters to an integrated measure of nasality.

The system performs high-frequency nasality measurements over the time

course of vowels to generate temporally detailed nasality contours. These

measurements may be interpreted as a form of articulatory inference, or

as a representation of perceptual input. The system is trained and tested

on recordings of 17 native speakers of three languages—English, Spanish

and Bengali—speaking three types of vowels: oral (CV(C)), contextually

nasalized (CṼN), and contrastively nasalized (CṼ(C)) (Bengali only). The

measuring system is evaluated using various performance metrics.
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1 Introduction

In speech acoustics, we attempt to predict the properties of an acoustic signal

from a human vocal tract in a particular articulatory configuration. Inversely,

we may also attempt to predict the articulatory configuration from the acoustic

properties. This is known as the “inverse problem” or “articulatory recovery.”

This paper confronts the inverse problem in the particular case of recovering

velar position from acoustics. More specifically, the focus will be on recovering

velar position during vowels.

Nasalization refers to the lowering of the velum during vowels or other oral

continuants. When the velum lowers during vowels, the velopharyngeal port is

opened, and there is acoustic coupling between the nasal cavity and the main

vocal tract, giving rise to a distinct acoustic quality which we call nasality.

Vowel nasalization generally occurs as a result of coarticulation between vow-

els and adjacent nasal consonants: the velar lowering gesture associated with

the nasal consonant overlaps with the vowel. Nasal coarticulation happens in

both directions—anticipatory and carryover—and can extend across multiple

segments and across word or syllable boundaries (see Chafcouloff and Marchal,

1999). Nasal coarticulation is an extremely common event in speech cross-

linguistically. In many, but not all, languages there is also a second way vowels

can be nasalized: as a contrastive feature. For example, the French words beau

/bo/ (“beautiful”) and bon /bõ/ (“good”) contrast by nasalization of the vowel.

The acoustic effects of nasalization are well understood. Nasal coupling to

the main vocal tract introduces formants and antiformants into the acoustic

spectrum. Specifically, it results in energy losses at low frequencies, damping of

oral formants (especially F1), and introduction of nasal formants corresponding
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to the resonances of the nasal cavity and sinuses (Stevens, 1998, pp. 303-322).

Nasalization is gradient: the lower the velum travels, the wider the port

opens, and the more nasal the sound. Therefore, velar position should be re-

coverable from acoustics by somehow measuring the amount of nasality in the

signal. If the measure of nasality varies monotonically with velar position, it

provides a valid estimation of it—even if the relation is not linear. However, it

is difficult to identify such a measure in the acoustics. The reason lies in the

general nature of the inverse problem.

1.1 The inverse problem

A half-century of speech science has produced a wealth of knowledge about

how the vocal tract produces sounds. The knowledge enables us to predict the

properties of acoustic output given a known vocal tract state. However, doing

the inverse—recovering the vocal tract state from the acoustic output—is more

difficult.

This is in part due to the well-known problem of non-uniqueness in the

mapping from acoustics to articulation (e.g., Atal et al., 1978)), by which a

single acoustic effect can be caused by several vocal tract shapes. However, even

in the absence of a one-to-many mapping, it might still be difficult or impossible

to reconstruct the state of the entire vocal tract from an acoustic signal. This is

because it requires isolating the effects of individual articulatory factors, which

may be conflated in the acoustic output. This is analogous to isolating the

effects of individual stones dropped into a pool of water: because of the complex

interactions between those effects, it may be impossible to trace back to the

original sources.
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In the case of nasalization, we seek an acoustic measurement that reflects

one articulatory factor: velar position. The problem is that the acoustic effects

of velar lowering are conflated with other articulatory factors, including the

anatomy of the speaker producing the nasalized sound and the oral articulation

(vowel) on which the nasalization is superimposed (Fant, 1960, p. 149).

The nasal cavity, while fixed for a particular speaker, differs widely between

speakers. Consequently, for each speaker the acoustic effects of velar lowering

will be different. Furthermore, the effect of nasalization varies depending on

the shape of the oral cavity, which differs not only between speakers, but also

between vowels. Consequently, we have a situation where a particular acoustic

parameter A is a function of velar position P , as well as speaker S and oral

context O.

A = f(P, S,O)

But what we need in order to infer velar position is a monotonic function of the

form

A = g(P ).

Investigators have measured a variety of parameters in the acoustic spectrum

in the hopes of finding one or more which, possibly in combination, provide a

robust correlate of nasalization. For example, one type of parameter that has

been explored in the literature is the amplitude difference between F1 and one

of the nasal formants (Glass, 1984; Glass and Zue, 1985; Chen, 1995, 1997). In

theory, this difference should be monotonic with velar position, because as the

velum lowers, F1 diminishes in amplitude, while the nasal formant increases.

However, due to the dependence on speaker and oral context, such parameters
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do not behave in the desired manner.

1.2 Goals

The purpose of this research is to isolate an acoustic measure of nasality which

depends on velar position but is largely independent of speaker and oral context.

We have strong reasons to believe that this is possible. In many languages of the

world, such as Bengali or French, nasalization in vowels is used contrastively.

Therefore, members of those speech communities rely on the ability to perceive

nasality in order to distinguish words. That is, they must be able to determine

when a vowel is more or less nasal. And they must be able to do so regardless

of the speaker or the vowel. Since this perceptual ability is based on physical

information in the signal, it implies that a “nasality dimension” of some kind,

which is strongly related to velar position, must be recoverable in the signal.

This paper presents a novel method for measuring nasality in the acoustic

signal. To orient this work, it is important to make the following distinctions

regarding methods of nasality measurement:

1. automatic algorithms vs. manual procedures

2. quantitative measurement vs. classification

3. short-term vs. long-term measurement

As to the first distinction, the present research is concerned with developing a

rigorous computational algorithm, rather than a procedure that requires manual

work such as spectral peak picking. Manual procedures are too slow for large-

scale studies, and moreover tend to be less well defined than algorithms that

have to be executed by a computer. Regarding the second distinction, unlike
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applications in speech recognition that may only require classification of a vowel

as nasal or non-nasal, the goal here is a continuous quantitative measure that will

reflect the dynamics of velar activity as well as possibly the gradient influence

of acoustics on perception. And finally, with respect to the third distinction,

we are interested in short-term, high-frequency measurements that will yield a

temporally detailed picture of nasality over the time course of a vowel, rather

than a long-term value assigned, for example, to an entire vowel or half of a

vowel.

Note that this work is concerned with measuring nasality in vowels only, not

nasal consonants. Velar lowering leads to very different vocal tract configurations

in nasal consonants and vowels. In nasal consonants, output is from the nose

only, with the cavity behind the oral closure forming a cul-de-sac resonator.

In nasalized vowels, output is from both mouth and nose. Consequently, the

acoustic effects of velar lowering in consonants and vowels are different in kind

and must be treated separately.

The outline of this paper is as follows. The remainder of this introduction

is concerned with the applications of nasality measurement. Section 2 explores

the articulatory questions motivating the project. Section 3 reviews previous

work in acoustic measurement of nasalization. Sections 4 through 7 present an

automated system for measuring nasality over time in vowels. The procedure

includes multi-dimensional spectral analysis, followed by a normalization pro-

cedure which attempts to remove inter-vowel and inter-speaker variability from

the measure. The measure is applied at high temporal resolution over the time

course of vowels—specifically at every glottal pulse—which generates detailed

temporal profiles of nasality. The measure is developed and tested based on
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acoustic data from three languages: English, Spanish and Bengali. Section 8

presents an evaluation of the system and Section 9 gives a general discussion.

1.3 Applications

An automated acoustic measure of nasality over time, if successful, could have a

number of applications in research and technology. Possible areas of application

include articulatory study, research in human speech perception and automatic

speech recognition.

1.3.1 Articulatory research

In this paper, nasality measurement is primarily framed as an articulatory recov-

ery problem; therefore benefits to articulatory studies are naturally emphasized.

By recovering velar movement from acoustics we may study the dynamic artic-

ulatory processes of nasalization. (See Section 2 for more on the articulatory

questions motivating this work.)

But why study articulation through acoustics? One could measure the po-

sition of the velum more directly using a variety of devices (see Baken, 1987,

ch. 10, for a complete review). These include the nasograph, which measures

the degree of velopharyngeal opening by the amount of light passing from a

light source in the pharynx to a sensor in the nasal cavity (Ohala, 1971); the

velotrace, a mechanical device which rests on the velum and collects analog

movement data (Horiguchi and Bell-Berti, 1987); videoendoscopic observation

of the velum (Karnell et al., 1988); and EMG measurements of the muscles which

control the velum (Ushijima and Hirose, 1974).

Additionally, there are several correlates of velar function which are also
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directly measurable. These include nasal air pressure (Weiss, 1954; Shelton

et al., 1967); nasal vibration (Stevens et al., 1975, 1976; Horii, 1980); nasal

airflow rate (Quigley et al., 1964); and “nasalance,” which is the ratio of nasal

to nasal+oral acoustic energy output (Fletcher and Frost, 1974). While these

measures are not necessarily linearly related to velar position (Amelot, 2004),

they seem to be usually monotonically related.

Measuring nasality from the acoustics (that is, from the ordinary oral-nasal

output) has several advantages over these other techniques. Unlike all of the

measures given above, acoustic measurement is non-invasive, requiring no masks,

baffles or probes—merely a microphone and a computer. Hence the subject’s

normal speech patterns are not impeded. Also, in practice, it should be possible

to collect larger amounts of data because there is no need to worry about pro-

longed discomfort to the speaker. This leads to data sets which are statistically

more reliable.

1.3.2 Perception research

A further advantage of an acoustic measurement of nasality is that it simul-

taneously offers avenues into other areas of research besides articulation—for

example, perception. Given that the acoustic signal is the form in which speech

actually reaches the listener’s ear, measuring nasality in the acoustic medium

can be useful in quantifying perceptual input. As illustrated in Figure 1, the

acoustic measurement thus serves as a representation for both articulatory re-

construction and perceptual input. Quantification of nasality in the perceptual

input could in turn inform studies of nasality perception in speech processing.

There is already a body of literature concerned with quantifying perception
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Figure 1: Acoustic measurement as a representation for both articulatory reconstruction
and perceptual input.

of nasality in vowels as a function of time. For example, Lahiri and Marlsen-

Wilson (1992) (Bengali and English) and Ohala and Ohala (1995) (Hindi and

English) used a gating methodology to quantify nasality perception during vow-

els (to explore the possible effect of lexical representation on speech processing).

Research with eyetracking (e.g., Andruski et al., 1994; McMurray et al., 2004)

supports the idea that listeners are sensitive to the presence of acoustic cues as

they become available in the speech input; the eyetracking paradigm could also

be applied to vowel nasalization. However, knowing whether listeners perceive

a nasal or non-nasal vowel over time would be more informative if we also knew

what information was physically available in the input. A simultaneous acoustic

measure of nasality could tell us how the information that is available is actu-

ally used by listeners: that is, we would have a time-varying measure of both

stimulus and response.

1.3.3 Automatic speech recognition

If the information present in the signal is adequate to enable human listeners to

distinguish nasal from non-nasal vowels, it should also be sufficient to enable a

machine to do the same. Thus an automated acoustic measure of nasalization
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in vowels could be of use in automatic speech recognition. It could be of use

in detection of phonemically nasal vowels in languages that have them. Fur-

thermore, it could help in detection of nasal consonants, especially in highly

coarticulated contexts where the nasal murmur is mostly or entirely absent, and

the only indication of the nasal consonant is the nasalization imparted on the

vowel (Glass and Zue, 1985; Hasegawa-Johnson et al., 2005). Nasality detection

could also be indirectly of use in vowel recognition. Nasalized vowels present a

problem for formant tracking algorithms, which become confused by the spectral

consequences of nasalization. If nasalization were correctly identified during a

vowel, different tracking strategies could be employed (Fant, 1960; Glass and

Zue, 1985).

2 Articulation of nasalized vowels

This section briefly explores the articulatory questions motivating this work:

• What is the temporal profile of velar movement in nasalized vowels?

• How does it differ between types of nasalized vowels?

• How does it differ between speakers and languages?

The phrase “temporal profile” denotes the timing, magnitude, duration and

speed of velar lowering over the course of the vowel.

In terms of types of nasalized vowels we are concerned primarily with two

types: vowels that are nasalized due to coarticulation with a neighboring nasal

consonant, and vowels that are nasalized by a contrastive feature associated with

the vowel itself. These will be referred to as contextually and contrastively

nasalized vowels, respectively.
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This is not to say these are the only causes of velar lowering during vowels.

Another cause is passive velar movement, in which the velum is displaced

due to the movement of other articulators, such as the tongue body. Due to

passive velar movement, low vowels tend to be more nasalized than high vowels,

even in oral contexts (Moll, 1960). There is also a certain amount of constant

background nasality that may be present simply because of the speech style or

physiology of the speaker. And if there are structural or functional defects in

the velopharyngeal mechanism, such as cleft palate, the velum may be incapable

of closing the velopharyngeal port (Sloan, 2000). Inadvertent nasalization is

also common among the hearing impaired (Brehm, 1922).

The present research is not centrally concerned with these other forms of

nasalization—although it is of interest to ask whether passive velar movement

will be reflected in nasality measurements in low vs. high vowels. Concerning

background nasality, note that the intention is to measure nasality relative to

this background level.

Studies that compare contextual and contrastive nasalization are rare. Cohn

(1990) looked at both contextually and contrastively nasalized vowels in French,

and found that in both cases the velum moved more quickly than in English

contextually nasalized vowels. She proposed an explanation that in languages

such as French, there is pressure to preserve contrast between the two types of

vowels, and rapid velar movement helps keep phonemically oral vowels as oral as

possible and phonemically nasal vowels as nasal as possible. However, Klopfen-

stein (2006) looking at another language with contrastive nasalization, Ottawa,

found that in contextually nasalized vowels velum movement was not as quick

as in contrastively nasal vowels in the same language. Thus the phonemically
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oral vowels were not kept as oral as in French. However, in Ottawa, the overall

magnitude of nasalization in phonemically nasal vowels was greater than in con-

textually nasal vowels, suggesting the possibility that in Ottawa the oral/nasal

contrast is protected by a different strategy than in French.

In a preliminary study, Berger et al. (2007) used the nasality measure pre-

sented in this paper to compare velar articulation between three types of vowels—

oral, contextually nasal and contrastively nasal—and across three different lan-

guages: English, Spanish and Bengali. The results included only average profiles

of the vowel tokens of each language, but significant differences between oral and

nasal vowels were shown. There was insufficient evidence, however, to suggest

a difference between the two types of nasal vowels. A superset of the acoustic

data from that study is used here, and similar comparisons of velar behavior

over time will be demonstrated below, without averaging over tokens.

There have been various studies comparing the timing and extent of con-

textual nasalization between languages. Solé (1992, 1995) claimed on the basis

of nasograph data that in vowels preceding nasal consonants, the velum is low-

ered earlier and for a greater portion of the vowel in American English than

in as Spanish. Other studies (Clumeck, 1976; Cohn, 1990; Rochet and Rochet,

1991) have found the same difference in timing of nasalization between American

English and French (where nasality is contrastive).

3 Acoustic measurement of nasalization

House and Stevens (1956) constructed an idealized electrical analog of the vocal

tract to study the acoustic effects of gradually opening the velopharyngeal port

during vowels. They concluded that the major effects of nasalization were the
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reduction in amplitude of the first formant, with concomitant broadening of its

bandwidth; upward shifting in the frequency of the first formant; and an overall

reduction in the energy of the vowel. Additionally, the emergence of a spectral

prominence above F1 at around 1000 Hz was observed. Hattori et al. (1958)

found another nasal resonance below F1 between 250 and 450 Hz. These effects

are illustrated in Figures 2 and 3. Fant (1960) confirmed these general charac-

teristics of nasalized vowels, but noted that the exact acoustic consequences of

nasalization vary considerably between different vowels and speakers.

Researchers attempting to measure nasality in vowels have tried to reduce

these acoustic modifications to one or several key parameters. Most efforts have

involved looking for acoustic parameters that robustly correlate with perception

of nasality when manipulated in synthetic speech. Studies attempting to es-

tablish a correlation with velar position (by comparing acoustic parameters to

articulatory data) are relatively rare.

House and Stevens (1956) manipulated the amplitude of F1 (A1) in their

analog synthesizer, and had listeners judge whether the sound they heard was

nasal or non-nasal, or give a judgment of degree of nasality. They found that

A1 needed to be reduced by 8 dB for positive nasality judgments to reach 50%.

Huffman (1990) looked at changes in the relative amplitude of F1 instead of

absolute amplitude, by taking the difference between A1 and H1 (the ampli-

tude of the first harmonic). Measurements of A1 − H1 in natural speech, both

averaged over the vowel and changing over time, were correlated with listeners

perception of nasal vs. oral vowels. The study found that both the average value

of A1 − H1 and the direction of change of the parameter over the time course

of the vowel contributed to perception of nasality. These results demonstrated
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Figure 2: Spectral comparison of oral and nasalized /a/. The top two panels show
spectrograms of the words god (oral /a/) and gone (contextually nasalized /a/) spoken
by a male English speaker (E16). The bottom panel compares spectra taken from the
oral vowel (blue) and nasalized vowel (red) at the time points indicated by vertical
lines. The comparison highlights the flattening of F1 in the nasal vowel, as well as the
emergence of the nasal formant below F1.
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Figure 3: Spectral comparison of oral and nasalized /i/. The top two panels show
spectrograms of the words bead (oral /i/) and bean (contextually nasalized /i/) spoken
by a male English speaker (E13). The bottom panel compares spectra taken from the
oral vowel (blue) and nasalized vowel (red) at the time points indicated by vertical lines.
The comparison demonstrates amplitude reduction and a slight frequency increase in
F1 in the nasalized vowel, along with the introduction of a nasal formant above F1 and
a general reduction in energy.
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the importance of dynamic measurement to perceptual studies.

The introduction in synthetic speech of the nasal peak above F1 (around

1000 Hz) (Maeda, 1982; Hawkins and Stevens, 1985) or the other nasal peak

below F1 (around 250-450 Hz) (Hattori et al., 1958; Maeda, 1982) was also found

to enhance nasality perception for particular vowels. Chen (1995, 1997) proposed

two parameters which combined relative A1 decrease with the emergence of the

two nasal formants: these were A1−P0 and A1−P1, where P0 is the amplitude

of the nasal formant below F1, and P1 is the amplitude of the nasal formant

above F1. As nasality increases, F1 should decrease while P0 and P1 increase;

thus both A1−P0 and A1−P1 should decrease with increasing nasal coupling.

In synthetic speech, Chen found a higher correlation of these parameters to

perceived nasality than A1 alone.

Chen also proposed a modification of these two parameters to attempt to

make them independent of vowel context. Acknowledging that the proximity

of F1 or F2 to one of the nasal formants could add a boost to P0 or P1 that

is not due to nasality, she attempted to subtract out this influence using a

normalization formula based on the frequencies and bandwidths of the nasal

formants.

Chen’s approach to measuring nasalization in vowels has several advantages:

it uses relative rather than absolute measurements of amplitude; it incorporates

multiple effects of nasalization (reduction of A1 combined with increases of P0

and P1) rather than relying on a single measure; and it attempts to normalize

these parameters over vowel types. However, there are also several problems

with the approach.

First, the two measures do not permit uniform measurement for all vowels,
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since different vowel types are more conducive to one measure or the other.

This is because the oral formants can occlude the nasal formants, making them

inaccessible to measurement: the low nasal formant may be hidden when F1 is

low (as in high vowels), and the high nasal formant may be hidden by either a

high F1 (low vowels) or low F2 (back vowels). Figure 4 shows two spectra in

which P0 and P1 are each obscured by F1.

Second, tracking nasal formants is even more difficult than tracking vowel

formants. Nasal formants emerge at different frequencies for different speakers

and also drift within the speech of one speaker. They are also much less salient

for some speakers than for others. Tracking nasal formants is particularly dif-

ficult with female speakers, for two reasons: resonances in general are broader

and less prominent in vowels spoken by females; and due to higher fundamental

frequency, the harmonics are more widely spaced in the frequency domain, in-

creasing the chance that the nasal resonances will disappear in the gaps between

harmonics. Figure 5 illustrates these differences in formant prominence and har-

monic resolution between spectra of a male and female speaker. (The general

spectral differences between male and female speakers is in fact a prime example

of how the acoustic effects of nasalization will depend on speaker anatomy.)

Note finally that Chen’s measurement technique was not automated—it in-

volved manual identification of the relevant peaks in each spectrum (which seems

to be required given the problems noted above). Also, measurements were long-

term averages (taken at three points in the vowel) rather than high-frequency,

short-term measurements that would generate a temporally detailed profile of

the vowel.

In literature relating to speech recognition, there are various studies con-
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Figure 4: Two spectra in which nasal formants are obscured by oral formants. The
top spectrum is a sample from the high vowel [i] in the word “bean” spoken by a male
English speaker; the low F1 obscures the nasal formant that is predicted in the 250-
450 Hz region (but note the unobscured nasal formant at 1000 Hz (NF)). The bottom
spectrum is from the low vowel [a] in the word “santo” spoken by a male Spanish
speaker; the high F1 obscures nasal formant that is predicated in the vicinity of 1000
Hz. (The peak at 500 Hz may be the unobscured low nasal resonance.)
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Figure 5: Spectral frames taken from the midpoint of the vowel /æ/ in pan spoken
by a male (top) and female (bottom) speaker. Peaks of the first four formants are
indicated. The female speaker has less prominent resonances and poorer harmonic
resolution, making formant tracking more difficult.
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cerned with detection of nasalized vowels. Note that such studies are concerned

with classifying a vowel as nasal or non-nasal (often to help determine whether

the following consonant is nasal), rather than with giving a gradient measure-

ment of nasality. For example, Glass (1984) and Glass and Zue (1985) used a set

of six acoustic parameters to automatically detect whether a vowel is nasalized.

These were (1) the center of mass below 1000 Hz, (2) the standard deviation

around the center of mass, (3) the minimum percentage of the time there is

a nasal resonance in the low-frequency region, (4) the maximum percentage of

time there is a nasal resonance in the low-frequency region, (5) the maximum

value of the average amplitude dip between F1 and the nasal resonance, and

(6) the minimum value of the average amplitude difference between F1 and the

nasal resonance. The parameters were measured in each of three subregions of

the vowel. Using a sum of the individual log likelihoods calculated from the

parameters, they were able to achieve a correct detection rate of 74% in a cor-

pus of 200 words recorded from six speakers. They also found that the system

performed significantly better for males than for females.

More recently, Pruthi (2007) evaluated 37 acoustic parameters and cited nine

of these as best-performing in an automated nasality detection task. Using the

nine parameters he achieved accurate nasality detection rates of 96%, 78% and

70% for StoryDB, TIMIT and WS96/97 corpora, respectively.

4 System components

The nasality measurement technique presented in this thesis is based on the

studies of acoustic parameters in the literature. However, it attempts to process

these parameters in such a way as to find a correlation to velar position that is



20

Training data Training
algorithm

Speaker model

Measuring
algorithmInput data Nasality

measurement

Figure 6: Functional arrangement of the measuring system.

independent of speaker and vowel. In addition, unlike most previous methods,

the measuring technique used here is implemented computationally, in a fully

automated software system. Furthermore, this system is designed to produce

quantitative measurements of nasality rather than merely binary (oral/nasal)

classification; and short-term, high-frequency measurements rather than mea-

surements of the vowel as a whole or of large parts of it.

The diagram in Figure 6 shows the functional arrangement of the measuring

system reported here. The measuring system comprises a training algorithm,

which derives a speaker model from acoustic training data, and a measuring

algorithm, which uses the speaker model to perform nasality measurements on

acoustic input data. Training is speaker-specific: a separate model is generated

for each speaker, based on the statistical distributions of various acoustic pa-

rameters, and that model is used to perform nasality measurements on input

recordings from the same speaker. The algorithms have been implemented in a

set of programs written in the Praat (Boersma and Weenink, 2007) scripting lan-

guage and MATLAB. The following sections describe these components in more
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detail. Section 5 describes the training data; Section 6 the training algorithm

and resulting speaker model; and Section 7 the measuring algorithm.

5 Training data

The measuring system is trained on a set of annotated digital audio recordings of

each speaker. The acoustic data used in this study was gathered and processed

with the help of colleagues at the University of Rochester: Meghan Clayards and

Neil Bardhan in the Department of Brain and Cognitive Sciences, and Joyce Mc-

Donough and Jill Thorson in the Department of Linguistics. We recorded native

speakers of three languages—English, Spanish and Bengali—reading from pre-

pared word lists. All three languages exhibit contextual nasalization of vowels,

and Bengali also has contrastive nasalization.

5.1 Word lists

The word list for each language was constructed out of “minimal sets” of lexical

items designed to exemplify differences between the three classes of vowels un-

der consideration: oral, contextually nasal and contrastively nasal. In all three

languages, the minimal sets included minimal pairs contrasting oral and contex-

tually nasal vowels; and in Bengali only, there were also minimal triples, which

further included contrastively nasal vowels. More specifically, minimal pairs

were generally of the form {CV(C), CṼN}, and minimal triples were of the form

{CV(C), CṼN, CṼ(C)}—where each C is an oral consonant (or cluster of oral

consonants), each N is a nasal consonant (or in rare instances a nasal consonant

followed by a homorganic oral stop), and V and Ṽ represent the same vowel in

oral and nasalized forms. In a few cases the words were not monosyllabic but
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English Spanish Bengali
CV(C) /hæg/ “hag” /dos/ “two” /ãAl/ “lentils”
CṼN /hæN/ “hang” /don/ “sir” /ãAn/ “right”
CṼ(C) /ãÃúh/ “arrogant”

Table 1: Examples of English and Spanish minimal pairs and a Bengali minimal triple.

the target syllable always matched one of the patterns above.

Table 1 gives examples of minimal pairs in English and Spanish, and a min-

imal triple in Bengali. In the ideal case, the words in a minimal set differed

only in one phonological feature: either the nasality of the coda consonant or

that of the vowel. In reality, due to constraints on lexical inventories, we had

to allow differences in other features, such as place or manner of articulation

of a consonant in the context. However, consonants in the syllable onset were

strictly required to be non-nasal.

In selecting lexical items, preference was given to minimal sets in which the

oral consonants were obstruents rather than sonorants. This is because sono-

rants, being more vowel-like, place greater demands on the articulators used

for vowels and hence are expected to have stronger coarticulatory influence on

vowels. It was desired to minimize this influence so as to maximize the homo-

geneity of each vowel. Furthermore, unlike obstruents, sonorants lack salient

landmarks that make it clear where to place segment boundaries, such as the

onset or release of a constriction.

The strategy of constructing the word lists from minimal sets contrasting

oral and nasal vowels led to the result that the word lists were fairly balanced

between oral and nasal vowels. To the extent that the lexicon allowed, we also

sought to give equal representation to each of the vowel qualities in the inventory.

Thus both nasal category and vowel quality were variables that were fairly well
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balanced in the data. Moreover, since vowel quality was constant within each

minimal set, a further property was that within each vowel quality there was

a balance between nasal categories, and vice-versa. This phonetic balancing of

the word lists turns out to be very helpful for the statistical analysis described

below.

Working under these criteria we produced an English word list with 90 items

and a Spanish word list with 34 items. A Bengali word list largely fitting our

criteria was provided to us by Dr. Aditi Lahiri of the University of Konstanz,

and after some minor changes that list contained 109 words.1 The three word

lists are provided in Appendix A.

5.2 Data acquisition

We recorded four speakers of Bengali, six speakers of American English, and

seven speakers of Spanish. The 17 speakers include 10 males and seven females,

ranging in age from 17 to 69. All are native speakers of their respective lan-

guages. Some of the speakers were recorded in the field in Calcutta, India and

Caguas, Puerto Rico. Recording was performed using a Marantz PMD 670

digital recorder and a unidirectional microphone at 44.1 kHz. Each speaker’s

recording was done in a single session.

Most of the speakers produced the words in a carrier phrase rather than in

citation form. Carrier phrases were used by all seven Spanish speakers, four

of the six English speakers, and two of the four Bengali speakers. The carrier

phrases were as follows: in Spanish, “Di —— fuerte” (Say —— loudly); in

English, “Say —— again”; and in Bengali, “Abar —— bolo” (Again —— say).

1Any errors in the current Bengali word list are no doubt our own.
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ID Sex Age Carrier Phrase
B11 F 50s no
B12 M 61 no
B13 M 17 yes
B14 M 19 yes
E11 F 25 yes
E12 F 25 yes
E13 M 20s no
E14 M 36 no
E15 M 59 yes
E16 F 50s yes
S11 M 20s yes
S12 M 20s yes
S13 F 22 yes
S14 F 58 yes
S15 M 20 yes
S16 F 69 yes
S17 M 13 yes

Table 2: Speakers

One of the Bengali speakers (B14) did not use this carrier phrase but rather

produced each word in a different sentence he composed. Most speakers repeated

each item (with carrier phrase) three times in a row. The speakers are listed in

Table 2 with sex, age and carrier phrase information. (The first letter of each

speaker’s ID indicates the language spoken.)

5.3 Annotation

The input to the training algorithm consists of a set of sound files. Within each

sound file, the acoustic analysis targets the intervals corresponding to the vowels

in the word lists. The sound files must be manually annotated in order to make

those vowel intervals accessible to the algorithm; that is, the intervals must be

defined in the time domain and labeled. We used Praat TextGrids (Boersma
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and Weenink, 2007) to do this annotation.

The defining of discrete intervals (“segmentation”) on the continuous speech

stream is more of an art than a science. Nonetheless, the placement of vowel

boundaries is of some significance because it defines the acoustic material on

which the algorithm operates. The strategy for segmenting vowels was roughly

as follows. If the vowel was preceded by an obstruent, the dividing boundary was

generally placed at the first glottal pulse after the closure release. (This meant

aspiration after stop releases was excluded from the vowel.) Similarly, if the

vowel was followed by an obstruent (or a nasal stop), the boundary was placed

at the last glottal pulse before the onset of closure. For the less straightforward

case of dividing the vowel from an adjacent oral sonorant, we sought the balance-

point between the two sounds based on auditory judgments and visible formant

transitions.

6 Training algorithm

This section presents the training algorithm, which derives a set of speaker-

specific information, called a speaker model, from the acoustic training data

(described in the preceding section). The model specifies the parameters with

which to measure nasality for the speaker, the contextual variability of those

parameters which may be subtracted for normalization, and the contributions

of the parameters to an integrated measure of nasality. More specifically, a

speaker model comprises these three components:

1. A set of nasality parameters P = {p1, p2, ..., pn}. These are the acous-

tic parameters through which nasality will be measured; each of them is



26

expected to correlate with velar position.

2. A set of context-dependent parameter distributions {Dp}, p ∈ P . These are

normal distributions of the nasality parameters dependent on oral context

(the configuration of the oral cavity). The distribution of each parameter

p is expressed as a pair of functions Dp = (µp(o), σp(o)), which give the

mean and standard deviation of the parameter as a function of oral context

o.

3. A parameter integration function I(~x). This is a function applied to vectors

~x of nasality parameter values to reduce them to scalar values constituting

measures of nasality.

Training is speaker-specific: a separate model is generated for each speaker.

Once established, the speaker model may be used by the measuring algorithm

to measure nasality in vowels recorded from the same speaker.

The training algorithm comprises three main steps: (1) discretization of the

input data by sampling and parameterization; (2) acquisition of the context-

dependent parameter distributions; and (3) derivation of the parameter integra-

tion function. These steps are discussed in sequence in the following subsections.

6.1 Sampling and parameterization

The first stage of the training algorithm is to reduce the acoustic training data

to a discrete form. The waveforms are temporally discretized by sampling each

vowel interval at specified points in time. Specifically, the vowels are sampled

at the extremum of each glottal pulse. The effect of sampling at glottal pulse

extrema is to phase-align the samples; that is, each sample will be located at
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Figure 7: Sampling of a vowel at glottal pulse extrema. The top panel shows the
waveform and the bottom panel the spectrogram.

the same phase of the glottal pulse cycle. Phase-aligning the samples seems to

minimize differences (jitter) between short-time spectra centered at each sample

(Richard Aslin, personal communication). Note that a consequence of sampling

once per glottal pulse is that the frequency of samples is tied to the pitch of

the speaker. As a result, females tend to yield more samples than males for

the same speech task. (Interestingly, this bias may be counterbalanced by the

lower harmonic resolution in females’ spectra.) Glottal pulse peaks are identified

using Praat’s pitch tracker and pulse-finding algorithm. Figure 7 illustrates the

sampling of a vowel.

Each sample is converted into a finite vector of values by parameterization

of the acoustic signal at that time point. The parameters measured include

the first and second formant frequencies, and the nasality parameters, which as

discussed above are a set of acoustic parameters expected to correlate with velar

position. F1 and F2 are measured using Praat’s formant tracker (Burg method)
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set to seek five formants below 5000 Hz for males and 5500 Hz for females, using

a 25-millisecond window.

The choice of nasality parameters to use is a variable in the speaker model.

One of the objectives here is to develop methods of evaluating acoustic param-

eters to assess their eligibility as nasality parameters. To keep the discussion

simple, only the following candidates will be considered: A1−H1, COG (center

of gravity in the low frequency spectrum), B1 (bandwidth of the first formant),

A1−P0 and A1−P1. As noted above, A1−H1, or relative F1 amplitude, should

decrease with nasalization due to the flattening out of F1; for the same reason,

B1 should increase. A1−P0 and A1−P1 should decrease as described by Chen.

Center of gravity, or center of mass, is a mean of frequencies in the spectrum

weighted by amplitude. Center of gravity in the low end of the spectrum—up

to 1000 Hz—is expected to drop with increasing nasalization due to addition of

a nasal formant in the vicinity of F1 (Glass, 1984). For the sake of comparison,

center of gravity up to 1500 Hz will also be tried.

These parameters (or their components) are measured as follows. Values for

B1 are obtained through Praat’s standard bandwidth command, which defines

the bandwidth of a formant as the width of the formant in the LPC-smoothed

spectrum at 3 dB below the peak. The remaining values are obtained on the basis

of a narrow-band spectral analysis performed over a 30-millisecond Gaussian

window centered at the sample time.

A1 (peak amplitude of F1), H1 (amplitude of the first harmonic), P0 (am-

plitude of the nasal formant below F1) and P1 (amplitude of the nasal formant

above F1) are all amplitudes of selected harmonics in the spectrum; so first,

all of the harmonics must be located using a harmonic-finding algorithm. The
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harmonic-finding algorithm finds all of the maxima in the spectrum, defines

the first harmonic as the one closest to the fundamental frequency returned by

Praat’s pitch function, and recursively defines each subsequent harmonic as the

maximum whose offset from the previously found harmonic is closest to one

increment of the fundamental frequency.

Once the harmonics are located, H1, A1, P0 and P1 are measured as fol-

lows. H1 is simply the amplitude of the first harmonic. A1, P0 and P1 are

formant peaks measured by finding the most prominent harmonic in a certain

frequency region. (It may be easier to find the formant peaks if the signal is

first pre-emphasized to control for spectral tilt, though this was not done in the

present study.) To measure A1, the algorithm searches for the highest-amplitude

harmonic within 1.2 increments of the subject’s fundamental frequency at the

sample time. Given the aforementioned difficulties of tracking nasal formants

(which were encountered first-hand in an earlier version of the algorithm), P0

and P1 are not obtained by any attempt at formant tracking, but simply by

taking the amplitude of the most prominent harmonic in the ranges where the

nasal formants are expected to arise. The ranges used were 0 to 450 Hz for P0,

and 800 to 1100 Hz for P1. While this is an admittedly crude approximation of

these variables, it is at least a straightforward way to use them in an automated

process.

To select the nasality parameters, the candidates will be comparatively eval-

uated using two criteria: discrimination and average acceleration. These criteria

will be defined in Section 6.1. In a future stage of development, a superset of

nasality parameters may be automatically ranked using these criteria to deter-

mine which are the most reliable indicators of nasality for a particular speaker.
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Figure 8: Plot of speaker E11’s entire sample set in formant space. This sample set
contains 11,164 samples.

The ranking could then be used to select which parameters to include in the

speaker model, or to determine a weighting of the parameters in the parameter

integration function. This selection or weighting process would be an additional

step in the training algorithm itself.

The sampling and parameterization of the acoustic data results in a large

number of observations in acoustic parameter space. To illustrate, Figure 8

shows all of the samples from speaker E11 plotted in formant space: a total of

11,164 samples. Of course, the number of samples depends on several factors,

including the number of items in the word list, the number of repetitions of each
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word, the lengths of the vowel tokens produced by the speaker, and the pitch of

the speaker’s voice (which determines sampling frequency).

6.2 Acquiring the nasality parameter distributions

The nasality parameters vary not only as a function of nasal coupling, but also

due to differences in oral configuration and speaker anatomy. The goal is to

obtain a nasality measure that is largely independent of these other articulatory

factors. Rather than seeking an acoustic parameter that somehow transcends

these influences—i.e., a robust global measure—the approach taken here is to

characterize the variability of the nasality parameters over speaker and oral

context, and remove that variability by a normalization process.

The contextual variability of the nasality parameters is characterized by de-

termining the distributions of the parameters in each local context. For this

purpose, the speaker model will contain a set of context-dependent parameter

distributions. Each distribution in the speaker model, Dp, is a pair (µp(o), σp(o))

giving the mean and standard deviation of the parameter p as a function of oral

context o for that speaker. As described below, each parameter is normalized

across oral contexts using z-score transformations based on these local distribu-

tions.

The context-dependent parameter distributions are inferred from the sample

set of the speaker. In order to determine the mean and standard deviation of a

parameter in a particular oral context, it is necessary to define the oral contexts

and map the samples to them. Two alternative conceptions of oral context are

explored here. In one, the oral context of a particular sample is the phoneme

class of the vowel token from which the sample was taken. In another, the oral



32

context is defined as the position of the acoustic sample in formant space. The

acquisition of parameter distributions dependent on both types of oral context

are described below.

6.2.1 Distributions dependent on vowel type

Vowel phonemes provide a simple characterization of the oral context of an

acoustic sample. This characterization is based on the assumption that a phoneme

represents a stable articulatory configuration in the oral cavity. The phoneme

affiliation of a given acoustic sample is easy to obtain. During annotation (see

Section 5.1), appropriate phoneme labels were associated with each vowel token

in the recording. (These labels were based on a “broad” transcription of the

vowels and no attempt was made to represent free variation or inter-speaker

differences in pronunciation.) The phoneme affiliation of a sample may be de-

termined from the label of the vowel token from which it was taken. Note that

for purposes of defining oral contexts, phonemically nasal vowels in Bengali are

classed together with their oral counterparts.

Once samples are mapped to phonemes, context-dependent parameter dis-

tributions can be obtained by taking the mean and standard deviation of each

parameter within each phoneme’s sample population. For example, Figure 9

illustrates the means and standard deviations of the parameter A1−H1 within

each of the English vowel phonemes for speaker E14. The influence of oral con-

text on the nasality parameter is evident from the differences between the local

distributions.

We now introduce the normalization function that converts parameter mea-

surements to a standard distribution. Within the speaker model, µp(v) and σp(v)
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Figure 9: Means and standard deviations of A1−H1 by phoneme based on the sample
set of speaker E14 (English-speaking male).
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are the mean and standard deviation, respectively, of a nasality parameter p in

the sample population of a vowel phoneme v. For any sample affiliated with

phoneme v, its original value in p, x, is adjusted using the z-score normalization

function

N(p, x, v) =
x− µp(v)

σp(v)
(1)

Note that since the normalization function is a z-score, each parameter after

normalization will be centered around zero and given in units of standard devi-

ation.

It is important to note that the success of this normalization procedure

depends on the accuracy of the parameter distributions within each oral context.

The accuracy of the distributions in turn depends on the phonetic balancing of

the training data (Section 4.1). A balance between vowel phonemes helps secure

a large enough sample population for each phoneme to infer a distribution.

Moreover, a balance between nasal and non-nasal tokens within each phoneme

promotes the result that the mean will represent a true midpoint in nasalization,

and the standard deviation will reflect the true range of cases.

As discussed in Section 7 below, the normalization function is used by the

measuring algorithm to normalize parameter measurements taken from acoustic

data of the same speaker. That acoustic data is not required to be phonetically

balanced, but the vowel intervals must still have phoneme labels, so that each

sample’s oral context can be identified for normalization of the sample.

6.2.2 Distributions dependent on position in formant space

Vowel phonemes provide a convenient way to divide a speaker’s sample set into

groupings reflecting local oral configurations. However, there are a number of
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drawbacks to dividing the sample set in this way.

First, there is the obvious drawback of being required to manually label

the vowel tokens in the acoustic input, both for training and for measurement.

Second, and more importantly, this approach assumes that vowel tokens with

the same phoneme label are articulatorily similar, although this is not neces-

sarily the case. Due to coarticulation and free variation, different tokens of the

same phoneme—even different parts of the same token—may be quite differ-

ent in articulation. As a result, samples that are in fact from quite different

articulatorily could be classified together as coming from the same oral con-

figuration. Context-dependent distributions based on these populations would

not accurately capture variability due to oral context, and would be unsuitable

for normalization. Moreover, during measurement, the mapping of incoming

acoustic samples to oral contexts would be unreliable.

A third problem with using phonemes to classify samples is that it assumes

the vowel phoneme has already been identified in advance of nasality measure-

ment. In speech recognition applications, the reverse might often be desired:

knowing first whether a vowel is nasal may be used to help identify the vowel,

since a different formant tracking technique might work better in nasal contexts

(Fant, 1960; Glass and Zue, 1985).

An alternative characterization of oral context which avoids these drawbacks

is position in formant space. The F1 and F2 values of a sample are directly

related to the articulatory configuration of the oral cavity at a point in time,

irrespective of phoneme category. Thus two samples which are close in formant

space can perhaps more safely be considered to be articulatorily similar than

two samples which merely have the same phoneme affiliation.
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Unlike the phoneme inventory, formant space does not inherently divide sam-

ples into discrete groups. Therefore a different strategy must be adopted for ac-

quiring means and standard deviations of the parameters in local oral contexts.

For this purpose, we sample the formant space in an n×n grid pattern as shown

in Figure 10. The grid vertices are evenly spaced along each formant’s axis in

the range from −3 to +3 standard deviations from the mean. Each grid point is

a station to which a local mean and standard deviation will be assigned. How-

ever, rather than computing the mean and standard deviation of a grid point

from a subset of the sample population, as was done with the phoneme contexts,

they will be computed from the entire population. Nonetheless, the mean and

standard deviation at a grid point will be local values by virtue of basing them

most heavily on samples located closest to the grid point in formant space. This

drop-off of influence with distance from the grid point is accomplished by assign-

ing a weight to each sample based on its Euclidean distance in formant space

from the grid point. Figure 11 illustrates the weighting of samples attenuating

with distance from a grid point.

Various weighting functions may be used. A simple choice is the inverse of

distance. Formally, for a given grid point g, the weight of each sample i with

respect to g is the inverse of its distance from g (normalized so that all weights

sum to one):

weight(g, i) =
1/dist(g, i)∑
j 1/dist(g, j)

(2)

For each nasality parameter, a local mean and standard deviation are computed

at each grid point based on the sample weightings with respect to that grid point.

Specifically, the mean of parameter p at grid point g is the weighted mean of the
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Figure 10: Sampling of the formant space in a grid pattern. Vertices of the grid (in-
dicated by circles) are evenly spaced in each dimension over the range from −3 to +3
standard deviations from the mean.

parameter over all sample points.

µ(p, g) =
∑

i

weight(g, i)p(i) (3)

After computing the mean of p at g, the variance of p at g can be derived as the

weighted mean of squared deviations from the mean at g; the standard deviation

at g can then be derived from the variance.

σ2(p, g) =
∑

i

weight(g, i)(p(i)− µ(p, g))2 (4)

σ(p, g) =
√

σ2(p, g) (5)

Figure 12 is a plot showing the local means and standard deviations at the

grid points for the parameter COG(1000) for speaker B11. Three surfaces are
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Figure 11: Top: Sample set of female Bengali speaker B11 plotted in formant space and
in one of the nasality dimensions (A1 − H1). Coloring shows the weighting of samples
based on distance in formant space from a particular grid point. The coordinates of
the grid point are approximately 976 Hz (F1) and 1395 Hz (F2). Samples closer to
the grid point in formant space will have more weight in determining the local mean
and standard deviation of the nasality parameter at the grid point. Bottom: The same
samples and weighting displayed in formant space only.
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Figure 12: Means and standard deviations of a nasality parameter (COG within 1000
Hz) over formant space for a female Bengali speaker (B11). The central green surface
represents bilinear interpolation of the local means of COG at the grid points in for-
mant space. The top red surface and bottom blue surface are bilinear interpolations of
the grid-point means plus and minus the corresponding grid-point standard deviations,
respectively.

shown. The center surface is a bilinear interpolation of the grid-point means,

and the top and bottom surfaces are interpolations of the grid-point means plus

and minus the corresponding grid-point standard deviations, respectively. This

plot is analogous to the plot in Figure 9 of means and standard deviations by

vowel phoneme: each grid point serves a similar function to one of the phonemes.

This plot clearly illustrates the deforming of the nasality parameter distribution

over formant space.
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As illustrated by the surfaces in Figure 12, local mean and standard deviation

values for the nasality parameter may obtained at intermediate points in formant

space by way of bilinear interpolation of the values at the grid points. Thus the

context-dependent distribution of the parameter is defined continuously over

formant space. Within the speaker model, µp(~f) and σp(~f) represent the local

mean and standard deviation, respectively, of a nasality parameter p at a point ~f

in formant space. We may state the normalization function analogously to that

used for phoneme-dependent distributions. For a sample with formant-space

coordinates ~f , its value x in nasality parameter p is adjusted by the z-score

N(p, x, ~f) =
x− µp(~f)

σp(~f)
(6)

This is identical in form to equation 1, the only difference being that the oral

context is now a vector in formant space rather than a vowel phoneme. Note

that this normalization function, like the one in equation 1, can be applied to

new data from the same speaker; the data need not be phonetically balanced,

and—in contrast to normalization using phonemes—phoneme labels on the vowel

intervals are not required.

A potential problem with using distributions dependent on position in for-

mant space is that F1 may not always be a reliable indicator of oral configura-

tion. It is generally agreed that F1 is affected not just by vowel articulation but

also by nasal coupling: nasalization is said to cause F1 to shift upward (House

and Stevens, 1956). Due to the effect of nasality itself on F1, the proximity of

samples in formant space may actually not be such a reliable indicator of close-

ness in oral configuration. This then raises the same concerns as normalization

based on phonemes: namely, that local distributions may not accurately capture
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variability due to oral context, and that during measurement, the mapping of

incoming acoustic samples to oral contexts may be unreliable. In Section 6.2,

the two types of contextual distributions—one dependent on vowel phonemes

and the other dependent on position in formant space—will be comparatively

evaluated in terms of how well they enable the normalization function to reduce

the variability in the parameters due to oral context.

6.3 Deriving the parameter integration function

After acquiring the context-dependent distributions of the nasality parameters

for a speaker (based on either conception of oral context), the final step in the

training algorithm is to define how to integrate the various nasality parameters

into a single measure of nasality. A commonly used technique for dimensionality

reduction is Principal Components Analysis (PCA). PCA produces a transfor-

mation that aligns the dimension of greatest variance with the first coordinate

axis, the (orthogonal) dimension of second greatest variance with the second co-

ordinate axis, etc. In the current approach, the parameter integration function

is based on a PCA transformation of the nasality parameter space. Only the

first principal component is used: after transformation, the value of an acoustic

sample along the primary axis is considered its degree of nasality.

The PCA is computed from the entire sample set of the speaker’s training

data. Prior to PCA, the parameter values of the samples are first normalized

using the normalization function (equations 1 or 6).

One cannot anticipate in advance of the PCA whether the first principal

component will be configured to increase or decrease with nasality. For clarity

it may be desirable to reverse the nasality dimension, so that it is oriented to
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increase with nasality. This orientation correction may be accomplished auto-

matically, using the following method. (1) Classify the speaker’s training data

samples into those taken from oral contexts (CV(C)) and those taken from nasal

contexts, (CṼN and CṼ(C)); (2) take the mean nasality value for each of the

two populations; (3) if the oral mean is greater than the nasal mean, invert the

transformation matrix.

As with other aspects of the speaker model, the parameter integration func-

tion (i.e., PCA transform) is speaker-specific.

7 Measuring algorithm

The speaker model generated by the training algorithm specifies how to measure

nasality for a particular speaker. It defines the nasality parameters to use, their

distributions in different oral contexts of the speaker, and their contributions to

an integrated measure of nasality. This model can be used to measure nasality at

points in time either in the training data or in a set of new vowel tokens recorded

from the same speaker. Given a set of input acoustic data, the main steps for

performing these measurements—the measuring algorithm—are as follows.

1. Sample and parameterize the vowels. As in the training algorithm, sample

at glottal pulse extrema. For each sample, obtain values for each of the

nasality parameters included in the model. If the parameter distributions

in the model are defined to be dependent on position in formant space,

then also obtain values for F1 and F2.

2. For each sample, normalize its nasality parameter values using the normal-

ization function (equation 1 or 6, depending on the type of oral context
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the parameter distributions are dependent on.)

3. For each sample, reduce the vector of parameter values to a single nasality

measure by applying the parameter integration function (i.e. take the

first principal component of the PCA transform). Due to the z-scores in

the preceding step, the nasality measure will be centered around zero and

given in units of standard deviation.

The acoustic data to which the measuring algorithm is applied need not be

phonetically balanced; however, the vowels must still be marked off in some way

and, if normalizing based on vowel classes, they must have phoneme labels as

well.

Figures 13-15 demonstrate measurements of nasality over time using the

measuring algorithm as just described. The speaker model used for these mea-

surements included the nasality parameters A1 − H1 and COG(1000), and pa-

rameter distributions based on formant space locations. Each figure plots the

nasality measure (first principal component of the PCA) as a function of time

for multiple tokens of a vowel spoken by one speaker in two or three contexts:

oral, contextually nasal, and (Bengali only) contrastively nasal.

8 Evaluation

Ideally, to evaluate the success of the measuring system in capturing a dimension

correlating with velar position, one would directly compare the acoustic-based

measurements it produces with more direct measurements of velar position, such

as those discussed in Section 1.3.1. This type of evaluation would require simul-

taneous recording of acoustic and articulatory data. However, synchronized
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Figure 13: The nasality measure (first principal component of the PCA) as a function
of time for multiple tokens of the English vowel /oU/ spoken by E11 in two contexts:
nasalized in the word /boUn/ (shown in blue) and oral in the word /boUd/ (shown in
green). Only the vowel intervals are shown. Vowel offsets are aligned at time 0.
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Figure 14: The nasality measure (first principal component of the PCA) as a function
of time for multiple tokens of the Spanish vowel /a/ spoken by S12 in two contexts:
nasalized in the word /santo/ (shown in blue) and oral in the word /salto/ (shown in
green). Only the vowel intervals are shown. Vowel offsets are aligned at time 0.
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Figure 15: The nasality measure (first principal component of the PCA) as a function of
time for tokens of the Bengali vowel /a/ spoken by B11 in three contexts: contrastively
nasalized in the word /ããúh/ (red line), contextually nasalized in the word /ãan/ (blue
line), and oral in the word /ãal/ (green line). Only the vowel intervals are shown. Vowel
offsets are aligned at time 0.
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articulatory data was not available with the acoustic data used in this study.

Alternatively, one could look for confirmation of the acoustic measurements

in some measure of perception of nasality. This would require design of a percep-

tual study in which the perception of nasality in a stimulus could be quantified as

a function of time (see Section 1.3.2). Then, at each time point in the stimulus,

the perceptual measure acquired from one or more subjects could be compared

to an acoustic measure produced by the measuring system. A perceptual study

of this nature is currently under development here at the University of Rochester.

Lacking reference to simultaneous articulatory or perceptual data, one may

evaluate the measuring system in more indirect ways. In particular, one may

look at statistical properties of the measurements to see how well they fulfill

certain expectations. However, even with a scoring method of this type, any

evaluation of a measuring system is somewhat meaningless unless we can com-

pare it to another measuring system to or a gold standard. In the present case,

the measuring system will not be compared to other systems, but rather, the

system will be compared to itself using different options for components of the

speaker model, or when possible it will be compared to worst-case performance,

or best-case performance.

First, the various possible nasality parameters will be comparatively eval-

uated based on the criteria of discrimination and average acceleration. Next,

parameter normalization will be evaluated by comparing variability due to oral

context in three cases: normalization using phoneme-based distributions, nor-

malization using formant-based distributions, and the worst case of no normal-

ization. Finally, parameter integration will be evaluated by comparison to the

best case of capturing all variance in one dimension.
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Several of the evaluation criteria used below make reference to an a priori

classification of vowels as oral or nasal. “Oral” vowels are defined as phonem-

ically oral vowels in an oral context (CV(C)), and “nasal” vowels include both

phonemically nasal vowels (CṼ(C)) and phonemically oral vowels in a nasal

context (CṼN).

8.1 Evaluation of the nasality parameters

This section will comparatively evaluate the six nasality parameters described in

Section 6.1, on the basis of two performance metrics: discrimination and average

acceleration. The outcome of this evaluation may help determine the relative

suitability of the nasality parameters for inclusion in the speaker models.

Discrimination: Ability of the parameter to discriminate between (pre-classified)

nasal and oral vowels; or in other words, how good the parameter is at discrim-

inating between contexts that tend to differ in velar position. Discrimination of

a parameter p for a speaker s is calculated as follows:

DISC(p, s) =
|µo(p, s)− µn(p, s)|

σ(p, s)
(7)

where µo(p, s) is the mean value of parameter p over all samples taken from oral

vowel tokens of speaker s, µn(p, s) is the mean value over all samples taken from

nasal vowel tokens of speaker s, and σ(p, s) is the standard deviation of p over all

samples of speaker s (from both oral and nasal vowels). A higher discrimination

value is better.
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Average acceleration: Average absolute acceleration of the parameter. In

general, the dynamics of a nasality parameter should be a believable reflection

of velar dynamics. Given that the velum is a fairly slow moving articulator,

the parameter should be penalized for abrupt changes over time or changing

direction several times during the course of a vowel. Such behavior is probably

indicative of noise in the parameter since it is unlikely to be due to the velum.

In other words, an overall low amount of acceleration (positive or negative) is

preferred. Average (absolute) acceleration of a parameter p for a speaker s is

approximated as follows. For each vowel token v spoken by s, for each pair of

successive samples (i, i + 1) in v, a velocity value is computed as

vel(v, i, i + 1) =
∆p(v, i, i + 1)
∆t(v, i, i + 1)

(8)

where ∆p(v, i, j) is the change in the value of parameter p between samples i

and j of p, and ∆t(v, i, j) is the difference in time between the two samples.

Next an absolute acceleration value is computed for each sample based on the

two incident velocities:

acc(v, i) =
|vel(v, i− 1, i)− vel(v, i, i + 1)|

∆t(v, i− 1, i + 1)
(9)

Finally, the average acceleration of parameter p for speaker s is computed as the

mean of the accelerations measured at all the samples of all the vowel tokens of

s:

ACC(p, s) =

∑
v,i∈v acc(v, i)
σ(p, s)Ns

(10)

where Ns is the total number of samples of speaker s, and σ(p, s) is the standard

deviation of parameter p over all samples of speaker s. The metric is given in
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Speaker A1−H1 COG(1000) COG(1500) B1 A1− P0 A1− P1
B11 1.0354 0.4062 0.1032 0.6673 0.2478 0.5490
B12 0.6025 0.6176 0.2478 0.7175 0.6357 0.4026
B13 0.5084 0.2199 0.2998 0.4424 0.0993 0.6413
B14 0.0647 0.1158 0.2776 na na na
E11 1.0135 0.5449 0.4471 0.1183 0.7624 0.2631
E12 0.8570 0.5567 0.2215 0.4141 0.5453 0.4937
E13 0.5183 0.8580 0.7686 0.5030 0.7271 0.4251
E14 0.7624 0.6762 0.6426 0.0896 0.2525 0.3354
E15 0.3777 0.8170 0.8003 0.3166 0.8760 0.1264
E16 1.0134 1.0303 0.8473 0.6494 1.0900 0.4883
S11 0.6578 0.4196 0.1671 0.5620 0.4987 0.3893
S12 1.1948 0.6009 0.4854 0.8497 0.6176 0.2994
S13 0.6296 0.1457 0.1342 0.1818 0.1852 0.3642
S14 0.3473 0.1287 0.0759 0.4711 0.3452 0.0814
S15 0.8344 0.3781 0.2816 0.3414 0.4884 0.1549
S16 0.4913 0.0005 0.0513 na na na
S17 0.9859 0.1388 0.1246 1.0978 0.5503 0.5879
Average 0.6997 0.4503 0.3515 0.4948 0.5281 0.3735

Table 3: Discrimination results for each nasality parameter by speaker and averaged
over speakers.

units of standard deviations per second per second.

Table 3 presents the discrimination results for each of the six nasality pa-

rameters based on the training data, by speaker and averaged over speakers.

Looking at the averages over all speakers at the bottom of Table 3, A1−H1 had

the best overall discrimination score, A1− P0 was second, B1 and COG(1000)

were both middling, while A1 − P1 and COG(1500) had relatively poor dis-

crimination. Notably, COG(1000) had considerably better discrimination than

COG(1500).

Table 4 shows the results in average acceleration for each parameter. Again

looking at cross-speaker averages, the worst overall performers were B1 and

A1−P1. In contrast to its good discrimination results, the parameter A1−H1
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Speaker A1−H1 COG(1000) COG(1500) B1 A1− P0 A1− P1
B11 1408.3 849.1 712.6 4381.7 1852.1 1860.2
B12 2984.2 1355.9 1233.6 3060.0 2579.3 2596.5
B13 2262.5 1055.1 1187.4 1850.4 1229.3 2233.6
B14 2646.3 1801.9 1761.1 na na na
E11 1300.4 582.2 574.4 5880.3 1515.6 1313.7
E12 1587.7 1046.3 942.6 4917.4 2281.1 1768.1
E13 1630.3 930.8 897.6 3130.4 1828.0 1177.4
E14 1125.7 786.3 784.8 2341.3 1049.1 1076.5
E15 2671.4 993.5 990.4 3923.2 2281.9 2224.2
E16 2021.4 1311.0 1314.7 4718.7 2311.7 1741.1
S11 4014.4 998.4 876.1 3138.4 3271.9 2076.6
S12 1363.0 794.7 780.2 1635.1 1472.8 1717.7
S13 2673.5 1361.3 1713.6 3607.5 2404.7 2946.3
S14 2442.5 1267.3 1434.6 3247.3 2737.8 3006.4
S15 2278.6 1327.9 1410.7 3467.2 1672.1 3136.3
S16 1694.3 1092.0 1215.9 na na na
S17 2304.9 1189.3 1241.8 1836.6 1494.2 1848.7
Average 2141.7 1102.5 1121.9 3409.0 1998.8 2048.2

Table 4: Average acceleration results (in standard deviations per second per second)
for each nasality parameter, by speaker and averaged over speakers.
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also had high average acceleration, indicating that this is a relatively jumpy

parameter even though it is sensitive to nasality. COG—in both the 1000 and

1500 Hz ranges—had the least acceleration overall (that of COG(1000) was

slightly better).

To better illustrate differences in acceleration between parameters, Figure 16

shows measurements of A1−H1 and COG(1000) (after normalization) over the

time course of one token of the vowel /a/ in gone, spoken by speaker E15. Note

in Table 4 that for this speaker, A1−H1 has an above-average score for average

acceleration, and COG(1000) has a below-average score. The plot in Figure 16

exemplifies this difference in acceleration: although the two parameters more or

less track each other, A1 − H1 displays a more erratic, noisy sort of behavior.

Of course, this figure only illustrates one vowel token and does not necessarily

show how the parameters behave generally for this speaker.

The results of the discrimination and average acceleration tests may be stud-

ied in combination, to weigh the general suitability of each parameter. Looking

at cross-speaker averages, the two metrics do not always agree in their selection.

Although B1 had a moderate discrimination score, its exceptionally high acceler-

ation score indicates that it is probably too noisy a parameter to be useful. (The

noise may perhaps be due to the bandwidth-measuring function in Praat, rather

than an inherent instability in bandwidth. However, this is difficult to assess

since formant bandwidth is not a rigorously defined concept independently of

the algorithm used to measure it.) Similarly, A1−H1 had the highest discrimi-

nation but scored poorly overall in average acceleration. COG(1000) had worse-

than-average discrimination but better-than-average acceleration. On certain

comparisons the two metrics agree. For example, A1−P1 scored poorly in both
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Figure 16: Measurements of A1−H1 (red) and COG(1000) (blue) (after normalization)
over the time course of one token of the vowel /a/ in gone, spoken by speaker E15. The
comparison exemplifies the difference in acceleration between the two parameters for
this speaker.
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acceleration and discrimination, and COG(1000) was superior to COG(1500) in

both metrics.

Perhaps more interesting than these general comparisons between cross-

speaker averages, however, is the variability in the results between different

speakers. For example, contrary to the general trends, for speaker B13, A1−P1

has the highest discrimination score rather than one of the worst, COG(1500)

has better discrimination than COG(1000), and B1 has a better-than-average

acceleration score. What this may indicate is that parameters that perform best

on average may not necessarily be the most suitable ones for individual speakers.

We can use this observation to our advantage. To improve the measuring

performance of the system for each speaker, each speaker model could be tailored

include the best-scoring parameters for that speaker. Alternatively, a weighting

could be assigned to the parameters based on the scores, and these weightings

could be used to impart more or less influence to individual parameters in the

parameter integration function.

In a future stage of this work, the comparative evaluation of the nasality

parameters may be automated and incorporated into the training algorithm. For

each speaker’s training, a large set of nasality parameters may be automatically

ranked using these criteria to determine which are the most reliable indicators

of nasality for that speaker. The results of the ranking would be used to either

select or weight the nasality parameters to be included in the speaker model.

In principle, speaker-specific parameter selection constitutes another way of

normalizing nasality measurement over speakers: by emphasizing in the speaker

model the parameters that seem most correlated with velar position for that

speaker, we effectively encapsulate these speaker-specific manifestations of nasal-
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ity, leaving an externally normal measure.

8.2 Evaluation of parameter normalization

The purpose of parameter normalization is to remove variability in the nasality

parameters due to speaker and oral context. The context-dependent parameter

distributions in the speaker model serve to capture that variability so that it

can be removed. The two types of distributions described in Section 6.2—one

dependent on vowel phonemes and the other dependent on position in formant

space—may thus be comparatively evaluated in terms of how well they enable

the normalization function to reduce the variability in the parameters due to

oral context.

One way to estimate variability due to oral context is to attempt to min-

imize the variability due to nasality. We may minimize the effect of nasality

by restricting attention to samples taken from vowels of the same nasality class

(oral or nasal). The following metric estimates variability due to oral context as

variability within nasality class relative to total variability.

Deviation within nasality class: A measure of deviation between samples

taken from the same nasality class—oral or nasal. The oral deviation of a

parameter p for a speaker s, DEVo(p, s) is defined as the ratio of the standard

deviation of samples taken from oral vowels to the standard deviation of the

whole sample population. Similarly, the nasal deviation of p for s, DEVn(p, s),

is the ratio of the standard deviation of samples taken from nasal vowels to the
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standard deviation of the whole population.

DEVo(p, s) =
σo(p, s)
σ(p, s)

DEVn(p, s) =
σn(p, s)
σ(p, s)

(11)

The total deviation measure is the average between oral and nasal deviations.

DEV (p, s) =
DEVo(p, s) + DEVn(p, s)

2
(12)

Smaller deviation values imply the presence of less variability due to oral con-

text. Deviation scores were computed for the nasality parameters A1−H1 and

COG(1000) based on the training data both before and after applying normaliza-

tion. Both types of normalization were evaluated. For the case of normalization

based on position in formant space, the context-dependent parameter distribu-

tions were constructed on the basis of 20 × 20 = 400 grid points in formant

space. (This density of grid points seemed to strike the right balance between

processing/memory load and the ability to capture local distributions.)

Tables 5 and 6 report deviation within nasality class for the parameters

A1 − H1 and COG(1000), respectively, for three cases: the case in which the

parameter is normalized based on phonemes (the “Phoneme” column); the case

in which it is normalized based on formant space (the “Formant” column); and

to provide a worst case, the case in which the parameter is not normalized (the

“None” column). The scores in this table may be interpreted as percentages.

For example, the value 0.89 in the “None” column for speaker B11 in Table 5

means that without normalization, the standard deviation of A1 − H1 among

samples within the same vowel class is 89% of the standard deviation over the

entire sample population of the speaker. The goal of normalization is to bring
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Speaker None Phoneme Formant
B11 0.89 0.84 0.88
B12 0.94 0.95 0.96
B13 0.96 0.96 0.96
B14 0.99 1.01 1.00
E11 0.86 0.79 0.84
E12 0.90 0.87 0.88
E13 0.94 0.93 0.91
E14 0.92 0.91 0.92
E15 0.97 0.96 0.97
E16 0.86 0.84 0.84
S11 0.93 0.91 0.91
S12 0.79 0.77 0.79
S13 0.94 0.93 0.94
S14 0.99 0.99 0.99
S15 0.91 0.88 0.91
S16 0.98 0.95 0.96
S17 0.87 0.85 0.88
Average 0.92 0.90 0.91

Table 5: Results of deviation within nasality class for A1−H1 with no normalization,
normalized over phonemes, and normalized over formant space, by speaker and with
cross-speaker averages.

these percentages down.

It can be seen in Tables 5 and 6 that for many of the speakers, the normal-

ization functions do bring the deviation scores down relative to the case with

no normalization. However, the goal is achieved only in small measure. As in-

dicated by the values at the bottom of each table, on average the reduction in

deviation is only one or two percentage points.

The apparent failure of the measuring system to normalize over oral context

may be considered further in Figure 17. This figure shows an average, time-

normalized nasality contour for each vowel phoneme of speaker E11, generated

by averaging over only the oral tokens of each vowel. (These measurements
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Speaker None Phoneme Formant
B11 1.02 0.95 0.98
B12 0.98 0.96 0.96
B13 0.99 0.96 0.98
B14 1.01 1.01 1.01
E11 0.96 0.87 0.91
E12 0.96 0.93 0.92
E13 0.90 0.86 0.88
E14 0.93 0.93 0.93
E15 0.90 0.88 0.91
E16 0.85 0.84 0.84
S11 0.94 0.92 0.91
S12 0.93 0.91 0.90
S13 0.99 0.99 0.98
S14 0.99 1.00 0.99
S15 0.99 0.92 0.96
S16 1.01 1.01 1.00
S17 0.99 0.99 0.98
Average 0.96 0.94 0.94

Table 6: Results of deviation within nasality class for COG(1000) with no normalization,
normalized over phonemes, and normalized over formant space, by speaker and with
cross-speaker averages.
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were produced using normalization based on formant space.) To the extent

that normalization over oral context is effective, we expect to see convergence

between tokens of different vowel phonemes that are in the same nasality class.

The scattering of vowels over the range from −2 to 2 standard deviations would

seem to show that this convergence is not taking place.

However, on closer inspection of the graph in Figure 17, it can be seen

that there is a concentration of vowels in a band between −2 and 0, and three

outlying vowels between 1 and 2. These outlying vowels are the high vowels

/i/, /u/, and the diphthong /ju/ (in the figure key these are represented by the

ARPABET symbols /iy/, /uw/ and /yuw/, respectively). Thus, if we exclude

high vowels from consideration, it may be found that normalization works better

than indicated by the deviation results.

Figure 18 further confirms the exceptional status of high vowels. This figure

presents the same comparison between vowels, but this time each curve is an

average over the nasalized tokens of each vowel for speaker E11. Here the most

outlying vowels are /i/, /u/, the diphthong /ju/, and (only at the tail end of the

vowel interval), the dipthongs /eI/, /OI/, /aI/, and perhaps /aU/ and /oU/. (In

the key, these are symbolized by /iy/, /uw/, /yuw/, /ey/, /oy/, /ay/, /aw/ and

/ow/). Again, these are all high vowels or diphthongs that end in high vowels.

In sum, the failure of the normalization function to eliminate the effect of

oral context on nasality measurement seems to be mostly a failure to eliminate

the effect of vowel height. This is not an effect limited to speaker E11 but was

seen across the speakers of this study. This problem will be discussed in more

detail in Section 9.
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Figure 17: Nasality contours of different oral vowels of speaker E11, averaged over tokens
and time-normalized.
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Figure 18: Nasality contours of different nasalized vowels of speaker E11, averaged over
tokens and time-normalized.



62

8.3 Evaluation of parameter integration

The final aspect of the measuring system that may be evaluated is parameter

integration, implemented here as PCA. The aim of parameter integration is to

reduce measurements in multiple parameters to one parameter—representing a

measure of degree of nasalization—without excessive loss of information. Since

the first principal component of the PCA is used as the nasality measure, the

best-case result would simply be to capture 100% of the variance in the first

component. Thus the success of parameter integration may be rated in terms of

how close the first component gets to that target. The proportion of variance

accounted for by the first principal component is also indicative of how closely

the nasality parameters in the speaker model are correlated with each other.

Table 7 lists by speaker the percentage variance captured by the first princi-

pal component using a speaker model with two nasality parameters A1−H1 and

COG(1000). The first principal component captures on average 85.9% of the

variance. The implication is that these two parameters are fairly well correlated.

9 Discussion and future work

In the past, researchers attempting to measure nasality acoustically have gener-

ally looked for acoustic correlates that influence perception of nasality, as when

manipulated in synthetic speech. It has been a theme of this paper that mea-

surement of vowel nasalization is not only a study of a perceptual factor, but

it is also a form of articulatory recovery. There are several reasons for viewing

nasality measurement in vowels as a method of recovering velar position. First,

nasality in vowels is caused by velar lowering. Causes can often be inferred from
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Speaker PC1
B11 88.7
B12 80.0
B13 84.9
B14 82.0
E11 89.5
E12 90.5
E13 89.1
E14 87.8
E15 81.7
E16 92.6
S11 75.6
S12 89.0
S13 82.6
S14 86.0
S15 88.0
S16 89.7
S17 82.9
Average 85.9

Table 7: Percentage variance captured by the first principal component for each speaker
using a model with two nasality parameters A1−H1 and COG(1000).
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their effects. Therefore, it is reasonable to suppose that degree of velar lowering

can be inferred from degree of acoustic nasality. Secondly, and perhaps more im-

portantly, it is difficult or impossible to ignore causal articulatory factors when

attempting to measure nasality. This is because nasality varies not only as a

function of velar position but also due to differences in speaker and oral cavity

shape. Attempts to isolate a single acoustic dimension of nasality are thwarted

unless one can normalize acoustic measurements across these extra articulatory

factors. In other words, even if one has no interest in the the articulatory causes

leading to nasality, the effects corresponding to those causes must still be sep-

arated from each other if one is to access a coherent nasality dimension. That

coherent dimension is thus intrinsically tied to the articulatory dimension that

formed it.

The extent to which it is actually possible to measure nasality and recover

velar position, given the conflation of effects in the acoustics, is another question.

It seems likely that some acoustic dimension corresponding to nasalization is ac-

cessible to human listeners. Nasalization is used contrastively in some speech

communities; therefore, members of those communities must be able to detect

differences in the level of nasality in vowels. However, this only means that that

listeners have to decide between two poles: nasal and non-nasal; it does not nec-

essarily imply the existence of a well-defined acoustic continuum on which we

can base measurements and from which we can infer velar lowering. Moreover,

the ability to distinguish between nasal and non-nasal counterparts of a vowel—

for example, between French beau /bo/ and bon /bõ/—may not even require

or imply the independent perception of the vowel quality and the nasal feature.

Rather, the nasalized vowel as a whole may be perceived as a distinct vowel
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quality—a gestalt. This would represent a disconnect between speakers’ percep-

tions of nasalized vowels and their knowledge of how to produce them—out of

distinct velic and oral gestures. However, the idea that speakers use different

knowledge for processing and producing speech is not that unreasonable.

In spite of these questions about the existence of a measurable “nasality

dimension” in the acoustic parameter space of vowels, the presence of spectral

modifications that vary gradually with nasalization invite one to seek such a

dimension. But in doing so, one must still isolate the modifications due to velar

lowering from those due to other articulatory factors.

In the present approach, an attempt is made to solve this inverse prob-

lem using a normalization technique. It may be instructive to compare this

method to more traditional approaches to articulatory recovery. In the past,

attempts at articulatory recovery have generally used the analysis-by-synthesis

model (Stevens, 1960). Given acoustic input, one tries to determine parameter

values in a vocal tract model that would allow one to synthesize an acoustic

signal with spectral properties matching those of the original signal (e.g., Mc-

Gowan, 1994). In contrast, the method presented here analyzes articulation from

acoustics without resynthesizing acoustics from articulation. Rather, articula-

tion is inferred “directly” from acoustics, based on the statistical properties of

the acoustic parameters. (The phrase “direct articulatory inference” has been

offered as a possible description of this procedure by Richard S. McGowan, per-

sonal communication. Note that this use of the word “direct” simply means

without resynthesis; it does not carry the same import as in “direct perception”

(Fowler, 1986).)

A disadvantage of the normalization approach is that it requires a set of
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phonetically balanced training data for each speaker so as to elicit accurate

statistics about the parameters. In the analysis-by-synthesis approach, exposure

to balanced training data is not required, but one does require a model of the

speaker’s vocal tract—which seems a significantly taller order.

Without time-aligned articulatory data with which to compare the acoustic

nasality measurements, an assessment of the accuracy of this method of articula-

tory recovery remains out of reach. However, a metric was proposed (Section 8.2)

to evaluate the effectiveness of the normalization function in reducing variability

due to oral context. This is relevant to determining the success of the measuring

system in isolating the effects of velar lowering from the effects of vowel articu-

lation. The metric indicated that the normalization function did not do much

to reduce variability due to oral context. The primary problem seemed to be

that vowel height had a continued influence on the nasality measure.

It is not exactly clear why the normalization function failed to normal-

ize the parameters over differences in vowel height. However, it is likely to

have to do with the similarities in the acoustic effects of velar lowering and

vowel height. Both of these articulatory adjustments affect the same frequency

region—namely, the region around F1. Both nasal coupling and lowering of the

tongue cause raising of F1. Nasal coupling also introduces nasal formants in

the same region where F1 might occur in corresponding oral vowels, creating

further similarity. Experiments have shown that the acoustic similarity of the

two articulatory factors also causes them to be similar perceptually, which can

lead to trading relations (Krakow et al., 1988). Nasalization effectively induces

a perceived vowel space contraction: low vowels are perceived as higher and

high vowels are perceived as lower in the presence of nasalization (Wright, 1975,
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1986).

The similarity between the acoustic effects of tongue height and velar lower-

ing may be an instance of the one-to-many problem encountered in articulatory

recovery, in which one acoustic result can be mapped to several articulatory

configurations. In this case, certain spectral features in the low frequency range

around F1 can indicate either tongue-height or velum-height adjustments.

The dependence of the nasality parameters on vowel height may be abated

by selecting different nasality parameters. It might be better, for instance, to

use a larger set of parameters than was used in the evaluations given above. One

might even use a set of parameters that characterize the entire spectrum (e.g.,

Mel Frequency Ceptstral Coefficients), rather than target just those particular

features theoretically associated with nasal coupling. Given this large set of

parameters, then, the training algorithm could include in the model the subset

which have the best scores in parameter evaluation (Section 8.1). The selection

of parameters might turn out differently for different speakers. Such an approach

may be tried in the future.

Another tactic might be to give more careful examination to the accuracy of

formant tracking. Correctly measuring the formant frequencies for each sample

is critical to normalization based on formant space; however, in the presence

of nasalization, formant trackers are often confused by the presence of nasal

formants. To see whether poor formant tracking is contributing to poor nor-

malization, it may be worthwhile to manually edit the automatically tracked

formants; any improvement in normalization that resulted would indicate the

extent to which normalization problems are due to formant tracking.

Another important aspect of the current approach that could be improved is
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the phonetic balancing of the word lists. Some vowel phonemes are underrepre-

sented; this is especially true in the Spanish list, which has only one word pair

containing /i/. Furthermore, the Bengali list is not quite balanced between oral

and nasalized vowels. While each vowel in the English and Spanish word lists

appears in an even number of oral and nasal contexts, the Bengali list has more

nasalized vowels than oral vowels due to the use of triples which each contain

two nasalized vowels (one contextual and one contrastive). In all, a more precise

approach to phonetic balancing may be required.

Future work should also include a more direct evaluation method. As noted

earlier, an acoustic measure of nasalization is truly untested until it is compared

with actual articulatory measurements, or alternatively, with measurements of

perception of nasality. Both types of evaluations are currently being planned.

10 Summary

This thesis approached the problem of acoustic nasality measurement in vow-

els as a case of articulatory recovery, or the “inverse problem”: inference of

the articulatory state of the vocal tract from the acoustic signal. Specifically,

measuring nasality in vowels was viewed as intrinsically being an attempt to iso-

late the acoustic effects of one articulatory variable—velar position—from the

simultaneous and often conflated effects of other articulatory variables, namely

speaker anatomy and the configuration of the oral cavity determined by the

vowel articulation. An automated measuring system was presented which is de-

signed to measure nasality independently of speaker and oral context using a

normalization procedure.

This measuring system consists of a training algorithm, which generates a
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set of speaker-specific information called a speaker model, and a measuring al-

gorithm, which uses the speaker model to measure nasality in vowels of that

speaker. The speaker model specifies the set of nasality parameters used to

measure nasality for the speaker, the distributions of those parameters depen-

dent on oral context, and a function for integrating the parameters into a single

measure. The training algorithm first samples and parameterizes the vowels in

the training data. It then acquires the context-dependent distributions of the

nasality parameters from this sample set, based on either of two conceptions of

oral context: vowel phonemes or position in formant space. Finally, the training

algorithm determines how to integrate the multiple nasality parameters into a

single measure of nasality for the speaker, by applying Principal Components

Analysis to the sample set. The parameter integration function utilizes the first

principal component of the PCA transform.

Lacking an independent measure of velar position or perception of nasal-

ity, the measuring system was evaluated using statistical metrics to compare

between different options in the speaker model and to compare performance

against best-case and worst-case performance. Different nasality parameters

were comparatively evaluated using the criteria of discrimination and average

acceleration. It was noted that while there were overall trends favoring some

parameters over others, different sets of parameters may be suitable for differ-

ent speakers. Speaker-specific parameter selection based on these criteria was

proposed as an additional step of the training algorithm. The normalization

procedure was evaluated in terms of its success in reducing variability in the pa-

rameters due to oral context. Both types of normalization—based on phoneme-

dependent and formant-dependent distributions—were assessed in comparison
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to the worst case of no normalization. It was found that neither method was

very successful in reducing variability of the nasality parameters due to differ-

ences in oral context, and this failure was mainly attributed to the inability to

separate the effects of nasal coupling from the similar effects of vowel height.

Future work will attempt to use a larger set of nasality parameters and perhaps

more careful formant tracking to overcome this problem. More precise phonetic

balancing of the word lists may also be required. Finally, this nasality measure

must be confirmed by comparison to direct articulatory measurements of velar

position or with measurements of perception of nasality.
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A Word lists

The three word lists used in this study are presented below. Within each list, the

words are grouped into the “minimal sets” out of which the list was originally

constructed: minimal pairs {CV(C), CṼN} and minimal triples {CV(C), CṼN,

CṼ(C)} (Bengali only). For each word, the list shows the orthographic form

(except in Bengali which is not written in a Roman script), the pronunciation

in IPA, and the gloss (for languages besides English).
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A.1 English word list

bob /bab/ hut /h2t/ dib /dIb/
bomb /bam/ hun /h2n/ dim /dIm/
god /gad/ sub /s2b/ dig /dIg/
gone /gan/ sum /s2m/ ding /dIN/
bog /bag/ bode /boUd/ kid /kId/
bong /baN/ bone /boUn/ kin /kIn/
bad /bæd/ robe /roUb/ wig /wIg/
ban /bæn/ roam /roUm/ wing /wIN/
bag /bæg/ code /koUd/ dead /dEd/
bang /bæN/ cone /koUn/ den /dEn/
dab /dæb/ dude /dud/ Jeb /dZEb/
dam dæm/ dune /dun/ gem /dZEm/
hag /hæg/ sued /sud/ head /hEd/
hang /hæN/ soon /sun/ hen /hEn/
lab /læb/ tube /tub/ bade /beId/
lamb /læm/ tomb /tum/ bane /beIn/
pad /pæd/ hued /hjud/ paid /peId/
pan /pæn/ hewn /hjun/ pain /peIn/
laud /lOd/ deed /did/ tape /teIp/
lawn /lOn/ dean /din/ tame /teIm/
pawed /pOd/ bead /bid/ side /saId/
pawn /pOn/ bean /bin/ sign /saIn/
dug /d2g/ beep /bip/ died /daId/
dung /d2N/ beam /bim/ dine /daIn/
gut /g2t/ deep /dip/ pout /paUt/
gun /g2n/ deem /dim/ pound /paUnd/
hub /h2b/ jib /dZIb/ gout /gaUt/
hum /h2m/ Jim /dZIm/ gown /gaUn/
hug /h2g/ bid /bId/ Lloyd /lOId/
hung /h2N/ bin /bIn/ loin /lOIn/
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A.2 Spanish word list

paz /pas/ “peace”
pan /pan/ “bread”
parcha /partSa/
pancha /pantSa/
plasta /plasta/
planta /planta/ “plant”
sal /sal/ “salt”
san /san/ “without”
salto /salto/ “I jump”
santo /santo/ “holy”
tal /tal/ “so/than”
tan /tan/ “so/than”
tes /tes/ “teas”
ten /ten/ “have (imp.)”
tres /tres/ “three”
tren /tren/ “train”
resta /resta/ “it remains”
renta /renta/ “rent”
fuerte /fwerte/ “loud/hard”
fuente /fwente/ “source”
pista /pista/ “race track”
pinta /pinta/ “he/she paints”
col /kol/ “cabbage”
con /kon/ “with”
dos /dos/ “two”
don /don/ “sir”
por /por/ “by”
pon /pon/ “put (imp.)”
sol /sol/ “sun”
son /son/ “they are”
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A.3 Bengali word list

A.3.1 Pairs

/Sik/ “bar/grid” /thak/ “stacks”
/SiN/ “horn” /than/ “widow’s sari”
/piúh/ “back” /pOth/ “path”
/pin/ “pin” /pOn/ “promise”
/úip/ “forehead dot” /dZOl/ “water”
/úin/ “tin” /dZON/ “rust”
/til/ “sesame seed” /SOkh/ “hobby/desire”
/tin/ “three” /SON/ “clown”
/peú/ “stomach” /lobh/ “greed”
/pen/ “pen” /lom/ “body hair”
/tSek/ “check” /tSul/ “hair”
/tSen/ “chain” /tSun/ “lime”
/phel/ “throw” /guó/ “molasses”
/phen/ “froth (boiled rice)” /gun/ “qualities”
/tal/ “turbid water” /ghur/ “roundabout”
/tan/ “pretense” /ghun/ “termite”

A.3.2 Triples

/ghaú/ “riverbank” /khaú/ “bed”
/gham/ “sweat” /kham/ “envelope”
/ghãú/ “trick” /khÕdZ/ “crease”
/kadZ/ “work” /tap/ “heat”
/kan/ “ear” /gan/ “song”
/kãdh/ “shoulder” /tãt/ “loom”
/bat/ “gout” /ãal/ “lentils”
/ban/ “flood” /ãan/ “right”
/bãdh/ “dam” /ããúh/ “arrogant”
/paúh/ “jute” /daS/ “servant”
/pan/ “betel leaf” /dan/ “gift”
/pãtSh/ “five” /dãt/ “teeth”
/bhat/ “cooked rice” /dhaú/ “person’s nature”
/bhan/ “pretense” /dhan/ “grain”
/bhãó/ “clay cup” /dhãtS/ “style”

(continued)
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/Sat/ “seven” /gOt/ “tune”
/San/ “whetstone” /gOm/ “wheat”
/SãS/ “kernel” /gÕd/ “to smell”
/tSal/ “rice” /khur/ “hoof”
/tSan/ “bathe” /kh un/ “murder”
/tSãd/ “moon” /khũt/ “fault”
/rat/ “night” /dip/ “island”
/ran/ “ran (in cricket)” /dik/ “direction”
/rãdh/ “to cook” /din/ “day”
/hat/ “hand” /tSil/ “kite (bird)”
/ham/ “measles” /tSit/ “supine”
/hãp/ “gasp” /tSin/ “China”
/akh/ “sugarcane” /dZor/ “force”
/am/ “mango” /dZom/ “god of death”
/ãS/ “scale” /dZõk/ “leech”
/bæg/ “bag” /kol/ “lap”
/bæN/ “frog” /kon/ “corner”
/bãk/ “bend (n.)” /kõtS/ “clothtuck”
/gatSh/ “tree” /go/ “cow”
/gan/ “song” /gol/ “round”
/gãú/ “knot” /gon/ “count”
/gã/ “village” /gõph/ “mustache”
/ges/ “gas”
/gen/ “knowledge”
/gæ̃t/ “strong posture”
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