INORGANIC SEMINAR

"Efficient Conversion of Carbon Dioxide to Fuels using Bismuth Materials that Display Tunable Catalytic Profiles"

Professor Joel Rosenthal University of Delaware Department of Chemistry and Biochemistry

Monday, October 22nd, 4:00pm 473 Hutchison Hall University of Rochester Department of Chemistry

Abstract:

The electrochemical reduction of CO₂ provides a pathway to address current issues in solar energy storage and the sustainable production of fuels. Many such approaches, however, have been hampered by a lack of affordable platforms that can efficiently promote CO₂ valorization with high selectivity and reasonable kinetics. It is in response to this need that we have developed inexpensive cathode materials comprised of post-transition metals for conversion of CO₂ to CO, HCO₂H and other value-added reduced carbon compounds. We find that these platforms are easily prepared and the outcome of CO₂ conversion can be tuned in the presence of varied room-temperature ionic liquids (RTILs). For example, we have prepared and studied a class of bismuth-based materials that promotes the reduction of CO₂ to CO with fast kinetics and high efficiencies in the presence of imidazolium ([Im]⁺) based RTILs. A multipronged initiative has elucidated the mechanistic pathways and molecular design principles that drive conversion of CO₂ to CO at the Bi/[Im]⁺ interface. We will discuss how integrated spectroscopic (XPS, XAS, XR, etc.) electroanalytical and computational methods have been used to interrogate the dynamics between electrocatalyst, RTIL and CO₂ at the cathode/electrolyte interface to provide insight into the pathway(s) by which the Bi/[Im]⁺ platform activates CO₂. We have also evaluated the electrochemistry of the Bi-cathodes in the presence of non-[IM]⁺ RTILs. These studies reveal that subtle modification of the RTIL structure, leads to a significantly different catalysis with CO₂. Electrolysis of CO₂ over Bi in the presence of RTILs generated from the organic base DBU promotes the reduction of CO₂ to yield formate (instead of CO) via an orthogonal CO₂ activation pathway. The 'catalytic plasticity' that is displayed by Bi/ [RTIL] platforms, along with implications for future discovery of catalyst/electrolyte combinations that can enable CO₂ conversion and solar fuels production will be discussed.

