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Moments of Probability Distributions 
 

Moments are used to characterize a set of similar (comparable) 
numerical data {di | i =1,2,….N}. For example, if the set represents 
different measurements of the same quantity, one is interested in 
the average value, or first moment, of the data set, 
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This is also known as arithmetical average. The accuracy of each 
individual measurement is illustrated by the average scatter of the 
actual data points di about the arithmetic average …d . Since by 
definition, the sum d di − =∑ c h 0 , the average deviation defined 
in terms of this sum is always zero and carries no information 
about the average accuracy of the measurements. This is the rea-
son why instead the variance, or second moment of the distribu-
tion {di}, is taken as a measure of this accuracy, 
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The sum is over the quadratic deviations of the N individual points 
di from the average. The normalization is to the number of inde-
pendent measurements of a quadratic deviation. This number is 
equal to (N -1) rather than equal to N, because the definition of the 
average d , against which each point di is measured, reduces the 
number of remaining degrees of freedom in the sample from N to 
N-1. Consider, for example, with two points, d1 and d2, the average 
is defined as d d d= +( )1 2 2/ . Then, there are only N -1=1 inde-
pendent differences that can be formed from this sample, namely 
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)∆d d d= −( 1 2 . Any other difference can be expressed as a com-

bination of d and .  ∆d

=

 
Experimental errors of the individual measurements di are typi-
cally given as standard deviation (error = ) ±σ d
 

         σ σd d= 2         (3) 
 
This quantity represents a measure of the scatter of the individual 
data points di. The accuracy of the average value determined by 
the entire set {di} is related to this standard deviation but not equal 
to it. By enlarging the data set by performing additional measure-
ments may not decrease the average scatter of the individual points 
much, while the average value of all data points may be much bet-
ter defined. The uncertainty (average error) of the arithmetic aver-
age of all individual values di is given in terms of the variance 
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As pointed out above, this variance has to be distinguished from 
the individual variance, since typically (large N) σ σd d

2 >> 2 . Re-
sults of a set of individual experimental measurements of an ob-
servable are typically given in terms of the average plus/minus the 
standard deviation:  d d± σ .  
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In the following example, a set of 5 measurements {di| i = 

1,..,5} of the same observable d is considered, as listed in the table 
(Excel worksheet) below. The individual columns give i, di, (di -
…d ), (di -…d )2. The results of the calculation of average, variance, 
and standard deviation are given at the bottom of the Table. The 

"statistical uncertainty" (error) of the arithmetic average of …d  = 
17.24 can be calculated with Equ. 4 as  σ d = =0152 5 0 068. / . .  

 
One can use and modify the worksheet, e.g., use it for another 

data set, by either clicking on the Table or on the link "example ", 
if the program application MS Excel is available on the computer. 
  

In the above example, all measurements are considered equally 
accurate or representative of the actual value of the observable d. 
However, it is often the case that measurements are compared that 
have been performed with different accuracy, e.g., with different 
instruments, different attention to detail, at different times and in 
different laboratories. Then, one assigns different weights wi to the 
different measurements and forms a weighted average,  
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daver= 17.24 varian= 0.023 std.dev.= 0.1517

No. i di di -daver (di -daver)^2

1 17.3 0.06 0.0036
2 17 -0.24 0.0576
3 17.3 0.06 0.0036
4 17.4 0.16 0.0256
5 17.2 -0.04 0.0016

17.24 0.023 0.151658
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If all weights are equal, wi = 1, one recovers formula (1) for the 
unweighted, arithmetical average. Obviously, if one normalizes the 
set of weights , such that , one obtains the simplified 
form of the weighted average 

~wi
~wi =∑ 1

                     d wi i
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d                       (6) 

 
The variance (statistical uncertainty) for the weighted average set 
of data with different weights wi is calculated as 
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 The rules for calculating averages and statistical uncertainty of 
data sets are derived in probability theory, assuming that the indi-
vidual elements xi of an actual data set {xi} are distributed accord-
ing to a statistical probability distribution P(x).  The probability 
distribution determines average values and the spreads in values of 
such data sets.  
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The most important probability 
distributions are the Gaussian, 
or normal, distribution, the 
Poisson distribution, and the 
binomial distribution. In ex-
perimental applications, often a 
normally distributed data set is 
postulated or argued. Here, the 
probability to find a certain 
value x is given by a continuous 
Gaussian function 
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as illustrated in the figure.  Average value …x  and variance , 
i.e., the first and second moments of P(x), define a Gaussian 
probability distribution function for the observable x completely. 
The probability function in Equ. 8 is normalized to unity, i.e., the 
integral ¶dxP(x) = 1, and 
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 Since the variance is calculated with respect to the average …x , the 
central value of P, the variance is the second central moment of 
P(x). Higher central moments, like the skewness of P(x), are de-
fined in an analog fashion. For a Gaussian, all odd moments are 
zero. It is completely determined by only the two first moments. 
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.

The graph above shows a specific example of such a Gaussian 
function for the variable x.  It is positioned at x=0, i.e., its center 
and average is equal to …x  = 0,  its variance equals ,  cor-
responding to a full width at half-maximum of 

 units in x.  The value of the Gaussian one 
standard deviation above and below the average,  i.e., at x = …x  ! 
σ

σ x
2 4 52= .

ΓFWHM x= ⋅ =2 35 5 0. σ

x,  is indicated in the figure by the intersection of the dashed hori-
zontal line with the Gaussian. 

 
The Gaussian or normal distribution is the limit of the binomial 

distribution, 
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defined for the integer variable m. The binomial distribution de-
scribes, for example, the probability for m successes out of a total 
of N attempts, when the probability for a success in any one at-
tempt is given by p. The quantity pm gives the probability for hav-
ing m attempts succeed, regardless of what happens to the other N-
m attempts, while the quantity (1-p)N-m gives the probability that 
these N-m attempts do not succeed. The product of these two prob-
abilities is, hence, equal to the probability that a given set of m at-
tempts, chosen out of N total attempts, succeed. The combinatorial 
binomial coefficient 
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gives the number of ways that a group of m attempts can be chosen 
out of N total attempts. It multiplies the product of the probabili-
ties, since one is only interested in the number m of successful at-
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tempts, for example m = 3 out of N = 56, but not in which of the 
attempts succeed, e.g., i =15, 28, and 44. 
 
The binomial distribution is normalized to unity: 
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Average value and variance for the binomial distribution are given 
by 

           m N p and N p pm= ⋅ = ⋅ −σ 2 1( )                (13)  
 
This is proven by considering the definition of the average 
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m=k+1 N=M+1 
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As examples. The figure shows two binomial distributions, each 
for a total of N = 30 trials. The distribution for p = 0.1 is concen-
trated at …m  l 3 and somewhat asymmetric. For the larger elemen-
tary probability of p = 0.3, the distribution moves to larger values 
of m. Simultaneously, it becomes broader and more symmetric. 
The distribution for p = 0.3 almost looks like a Gaussian. In fact, 
the Gaussian is a good approximation to the binomial distribution 
even for a relatively small number of trials N l 10.  
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As an ex-
ample for 
the applica-
tion of the 
binomial 
probability 
distribution, 
one can 
consider the 
game of 
coin tossing. 
The prob-

ability for success,  e.g., to obtain "head", in a single trial is equal 
to p = 1/2. The probability for failure in a single trial is given by (1 
- p), which happens to be equal to p.  
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It is easy to show numerically that in the limit of large values of N 
and a finite probability , the binomial distribution becomes 
Gaussian, 

p ≠ 0

                 lim ( ) exp
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where average and variance are given by Equ. 12, but with a re-
placement of the discrete variable m by a continuous variable m. 
This property is plausible already from the figure above.  
 
It is interesting to inspect the relation between average value and 
variance, because that relation is characteristic for statistical prob-
ability distributions. Considering the normal (Gaussian) distribu-
tion as a reasonably accurate fit to a binomial distribution, one has 
for the ratio of standard deviation (σ σm = 2

m ) to average, 
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This feature implies that, although the Gaussian becomes broader 
with increasing N, the relative width given by Equ. 14 decreases 
with 1/÷N. 
 
A probability distribution that is important for very unlikely proc-
esses with p d 0 is the Poisson distribution. For large numbers N 
of events (trials), N d ∞ , when the product the total number of 
success remains finite in spite of small elementary probabilities, 
i.e., when N$p ! 0, the binomial distribution transforms into the 
Poisson distribution 

                             P m e
mPoisson

m

( , )
!
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=
⋅ −

                               (15) 

 
where µ = Np is the 
average value.  
 
Examples of Poisson 
distributions are given 
in the figure, for aver-
age values of µ = 3, 5, 
and 10. One observes 
again an evolution to-
wards a Gaussian, for 
increasing values of µ 

(i.e., N). 
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Examples of processes described by Poisson-type probability 
distributions include decay and dissociation processes, tunneling 
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processes in general, where there a large number of trials (assaults 
on the potential barrier) but very few successes. 


