Agenda: Information, Probability, Statistical Entropy

- Information and probability simple combinatorics,.
Probability distributions, joint probabilities, Stochastic variables, correlations Statistical entropy

Monte Carlo simulations

- Partition of probability
- Phase space evolution (Eta Theorem)
- Partition functions for different degrees of freedom
- Gibbs stability criteria, equilibrium

Reading

Assignments
Weeks 4 \& 5
LN III.1- III.6:

Kondepudi Ch. 20
Additional Material
McQuarrie \& Simon
Ch. 3 \& 4
Math Chapters
MC B, E

Stochastic Variables (Observables)

Sources of stochastic observables x in physical sciences:

1) Quantal phenomena governed by quantal wave functions and inherent statistics.

2) Detection of processes with imperfect coverage (efficiency $\varepsilon<1$) and finite resolution distributing sharp observable x_{0} over a range in x.

Stochastic observables x have a range of values with frequencies determined by (normalized) probability distribution $\mathrm{P}(\mathrm{x})$. Characterize P by set of moments of P

$$
<x^{n}>=\int x^{n} \cdot P(x) d x ; \quad n=0,1,2, \ldots
$$

with the normalization $\left\langle x^{0}\right\rangle=1$. First moment of P :

$$
E(x)=<x>=\int x \cdot P(x) d x
$$

second central moment $=$ "variance" of $P(x)$

$$
\left.\sigma_{x}^{2}=\left\langle x^{2}\right\rangle-<x\right\rangle^{2}
$$

W. Udo Schröder 2023

Normal Distribution of a Stochastic (Random) Variable

Expected for many repeat measurements: Distribution over bins $x=$ const.

$$
\begin{aligned}
& P(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \cdot \exp \left\{-\frac{(x-\langle x\rangle)^{2}}{2 \sigma_{X}^{2}}\right\} \\
& \Gamma_{F W H M}=2 \sigma_{x} \cdot \sqrt{2 \ln 2}=2.35 \cdot \sigma_{x} \\
& \sigma_{x} \text { is NOT }=\text { uncertainty of }\langle x\rangle!
\end{aligned}
$$

Normalized (cumulative) probability

$$
P\left(x<x_{1}\right)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} \cdot \int_{-\infty}^{x_{1}} d x \exp \left\{-\frac{(x-\langle x\rangle)^{2}}{2 \sigma_{X}^{2}}\right\}
$$

Fundamental: Binomial A Priori Distribution

Integer random variable $m=$ number of specific binary (Yes/No) events, out of N total. Example: decay of m (from a sample of N) radioactive atoms, or m "head" up (out of N flips of a coin).
$\boldsymbol{p}=$ probability for a (one) success (coin head is up, decay of 1 exc. atom)
Choose an arbitrary sample of m trials out of N total trials (possibilities)
$\boldsymbol{p}^{\boldsymbol{m}}=$ probability for at least m successes (no conditions)
(1-p) ${ }^{N-m}=$ probability for $\boldsymbol{N}-\boldsymbol{m}$ failures (coin tail, survivals)
Probability for exactly m successes out of a total of N trials

$$
P(m) \propto p^{m} \cdot(1-p)^{N-m}
$$

\# ways m events be 'chosen' out of N identical ? \rightarrow Binomial coefficient

$$
\binom{N}{m}=\frac{N!}{m!(N-m)!}=\frac{(N-m+1) \cdots N}{1 \cdots m}
$$

Total probability (expected success rate) for any sample of m identical events:

$$
P_{\text {binomial }}(m)=\binom{N}{m} \cdot p^{m} \cdot(1-p)^{N-m}
$$

Binomial Distribution

Probability for m out of N identical events
$P_{\text {binomial }}(m)=\binom{N}{m} \cdot p^{m} \cdot(1-p)^{N-m}$

$$
\begin{gathered}
\text { Binomial coefficient } \\
\binom{N}{m}=\frac{N!}{m!(N-m)!}=\frac{(N-m+1) \cdots N}{1 \cdots m}
\end{gathered}
$$

Total probability for any m out of N identical events:
\Rightarrow Proper normalization : $\sum_{m=1}^{N} P(m)=\sum_{m=1}^{N}\binom{N}{m} \cdot p^{m} \cdot(1-p)^{N-m}=1$

$$
\text { Mean value } \mu=\langle m\rangle=N \cdot p ; \quad \text { Variance } \sigma_{m}^{2}=N \cdot p \cdot(1-p)
$$

$$
\left\langle m^{\nu}\right\rangle=\sum_{m=0}^{N} m^{\nu} \cdot P(m)=\sum_{m=0}^{N} m^{\nu} \cdot\binom{N}{m} p^{m}(1-p)^{N-m}
$$

Poisson Probability Distribution

Limit of binomial distribution $\quad \operatorname{Lim}_{p \rightarrow 0, N \rightarrow \infty} P_{\text {binomial }}(N, m)=P_{\text {Poisson }}(\mu, m)$
Probability for observing m events when average is $\langle m\rangle=\mu$

$$
P_{\text {Poisson }}(\mu, m)=\frac{\mu^{m} \cdot e^{-\mu}}{m!}
$$

Counts with Error Bars

W. Udo Schröder 2023

$$
\begin{aligned}
& \underline{\mu=\langle m\rangle=N \cdot p} \\
& \text { and } \quad \text { for } N \gg 1
\end{aligned}
$$

For radioactive decays $\left[\Delta t^{-1}\right] \rightarrow p=\frac{\text { Activity }}{N(\# \text { atoms })}$
$p \ll 1 \rightarrow \sigma_{m}^{2} \approx\langle m\rangle \#$ counts

Observe m counts (events) \rightarrow
\rightarrow statistical uncertainty is $\pm \sigma_{m}= \pm \sqrt{m}$

Radioactive Decay as Poisson Process

Useful when only a mean rate is known for sample survival or decay.
${ }^{137} \mathrm{Cs}=$ unstable isotope, decays with
$\mathrm{t}_{1 / 2}=27$ years $\rightarrow p=\ln 2 / 27=0.026 / a=8.2 \cdot 10^{-10} \mathbf{s}^{-1} \rightarrow$ small
Sample of $1 \mu \mathrm{~g}: \mathrm{N}=10^{15}$ particles (= \# trials for decay)
How many will decay?

$$
\mu=N \cdot p=8.2 \cdot 10^{+5} s^{-1}
$$

Count rate estimate $\mathrm{dN} / \mathrm{dt}=\left(\mathbf{8 . 2} \cdot \mathbf{1 0 ^ { + 5 }} \pm 905\right) \mathbf{s}^{\mathbf{- 1}}$
Probability for m decays $P(\mu, \mathrm{~m})=$

$$
P_{\text {Poisson }}(\mu, m)=\frac{\mu^{m} \cdot e^{-\mu}}{m!}=\frac{\left(8.52 \cdot 10^{5}\right)^{m} \cdot e^{-8.52 \cdot 10^{5}}}{m!}
$$

Poisson Probability Distribution

Binomial distribution in the limit of small p and large N (N•p > 0)

$$
\lim _{\substack{p \rightarrow 0 \\ \text { and } N \rightarrow \infty}} P_{\text {binomial }}(N, m)=P_{\text {Poisson }}(\mu, m)
$$

Probability for observing m
events when average is $\langle m\rangle=\mu$

$$
\left.P_{\text {Poisson }}(\mu, m)=\frac{\mu^{m} \cdot e^{-\mu}}{m!} \right\rvert\, \begin{aligned}
& \mathrm{m}= \\
& 0,1,2, \\
& \ldots
\end{aligned}
$$

$$
\mu=\langle m\rangle=N \cdot p \text { and } \underline{\sigma^{2}=\mu}
$$

is the mean, the average number of successes in N trials.

Observe N counts (events) \rightarrow \rightarrow uncertainty is $\sigma=\sqrt{ } \mu$

Unlike the binomial distribution, the Poisson distribution does not depend explicitly on por N !
\rightarrow With increasing p (<1.0):
Poisson \rightarrow Gaussian (Normal Distribution)

Distribution Moments and Limits

$$
P_{\text {binomial }}(N, m, p)=\binom{N}{m} p^{m}(1-p)^{N-m}
$$

Probability for m "successes" out of N trials, individual probability p

Measurement mean and variance ('uncertainty') $\bar{m}=N \cdot p \approx N_{o b s}$ and $\sigma_{m}^{2}=N \cdot p \cdot(1-p) \approx N_{\text {obs }}$
$N_{\text {obs }}=\#$ of "counts" observed, $p \ll 1.0$
Statistical "error" of $N_{\text {obs }}: \sigma_{m} \approx \sqrt{N_{\text {obs }}}$
$\frac{\sigma_{m}}{\bar{m}}=\frac{\sqrt{N \cdot p \cdot(1-p)}}{N \cdot p} \approx \frac{1}{\sqrt{N_{\text {obs }}}}$
\rightarrow more counts $=$ smaller error
Observe Poisson \rightarrow Gaussian/Normal

$$
\lim _{\substack{p \rightarrow 1 \\ N \rightarrow \infty}} P_{b i n}(N, m, p)=\frac{1}{\sqrt{2 \pi \sigma_{m}^{2}}} \cdot \exp \left\{-\frac{(x-\langle m\rangle)^{2}}{2 \sigma_{m}^{2}}\right\}
$$

Distributions P(m) approximates Gaussian very fast, already good for $p=0.2-0.3$

Central-Limit Theorem

Means (averages) of different samples of a large population data set cluster together closely. \rightarrow general property of samples of stochastic variables

The distribution of the sample means approaches a Gaussian normal distribution with increasing size of the sample, regardless of the form of the original (population) distribution.

The mean (average) of a distribution of stochastic data does not contain information on the actual shape of the distribution.

The average of any truly random sample of a population is already close to the true population average. Considering many samples, or large samples, narrows the choices. The Gaussian width becomes narrower for larger samples. \rightarrow The standard error of the mean decreases as the sample size increases.

Continuous Probability Distributions

Degrees of freedom $\{x, y, \ldots\} \rightarrow$ Joint Probability $P(x, y, \ldots)$

Normalized Probability

$$
\iiint d x d y \ldots \cdots P(x, y, \ldots) \equiv 1
$$

Partial or conditional probability

$$
\begin{aligned}
& P(x)=\iiint d x d y \cdots P(x, y, \ldots)<1 \\
& P(x=a)=\iiint d x d y \cdots P(x, y, \ldots) \delta(x-a)<1
\end{aligned}
$$

Average $\langle x\rangle_{P}=\iint_{0}^{\infty} x \cdot P(x, y, \ldots) d x \cdot d y \ldots$
and $\sigma_{x}^{2}=\left\langle(x-\langle x\rangle)^{2}\right\rangle_{P}$
Define normalized
Gaussian probability

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma_{x}^{2}}} \cdot \exp \left\{-\frac{(x-\langle x\rangle)^{2}}{2 \sigma_{x}^{2}}\right\}
$$

Continuous Probability Distributions

Degrees of freedom $\{x, y, \ldots\} \rightarrow$ Joint Probability $P(x, y, \ldots)$

Normalized Probability
$\iiint d x d y \ldots \ldots P(x, y, \ldots) \equiv 1$
Partial or conditional probability
$P(y)=\iiint d x \cdots P(x, y, \ldots)<1$
$P(y=b)=\iiint d x d y \cdots P(x, y, \ldots) \delta(y-b)<1$
Average $\langle y\rangle_{P}=\iint_{0}^{\infty} y \cdot P(x, y, \ldots) d x \ldots$
and $\sigma_{y}^{2}=\left\langle(y-\langle y\rangle)^{2}\right\rangle_{P}$
Define normalized
Gaussian probability

Correlations in Joint Distributions

For independent events (d.o.f) probabilities multiply. Correlations within distributions. Example: y increases with increasing x

Uncorrelated $P_{\text {unc }}(\mathrm{x}, \mathrm{y})$

Correlated $P_{\text {corr }}(\mathrm{x}, \mathrm{y})$

$$
\begin{aligned}
& P_{u n c}(x, y)=P(x) \cdot P(y)= \\
& \quad=\frac{1}{\sqrt{4 \pi^{2} \sigma_{x}^{2}}} \cdot \exp \left\{-\left[\frac{(x-\langle x\rangle)^{2}}{2 \sigma_{x}^{2}}+\frac{(y-\langle y\rangle)^{2}}{2 \sigma_{y}^{2}}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {corr }}(x, y)=\frac{1}{2 \pi \sqrt{\sigma_{x}^{2} \sigma_{y}^{2}-\sigma_{x y}^{2}}} \cdot \\
& \cdot \exp \left\{-\frac{(x-\langle x\rangle)^{2} \sigma_{x}^{2}+(y-\langle y\rangle) \sigma_{y}^{2}-2(x-\langle x\rangle)(y-\langle y\rangle) \sigma_{x y}}{2\left(\sigma_{x}^{2} \sigma_{y}^{2}-\sigma_{x y}^{2}\right)}\right\}
\end{aligned}
$$

Covariance: $\sigma_{\mathrm{xy}}=\int(x-\langle x\rangle) \cdot(y-\langle y\rangle) \cdot P(x, y) d x d y$
$\cot \alpha=\frac{1}{2 \sigma_{x y}}\left\{\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)+\sqrt{\left(\sigma_{x}^{2}-\sigma_{y}^{2}\right)^{2}+4 \sigma_{x y}^{2}}\right\}$
correlation coefficient $r_{x y}=\sigma_{x y} /\left(\sigma_{x} \sigma_{y}\right) ;-1 \leq r_{x y} \leq 1$

Probability Generating Functions

Example: 1-dimensional system $P(x)$

(Set $s=0)$

Characteristic functions of $P(x)$ (same info)
Laplace transformation of P

$$
\Lambda(s):=\int d x e^{-s \cdot x} P(x)
$$

Derivatives of $\Lambda(s)$:

$$
\begin{aligned}
\frac{d^{n}}{d s^{n}} \Lambda(s) & :=\frac{d^{n}}{d s^{n}} \int_{0}^{\infty} d x e^{-s \cdot x} P(x) \\
& =(-)^{n} \int_{0}^{\infty} d x x^{n} e^{-s \cdot x} P(x)
\end{aligned}
$$

$-\left(\frac{d}{d s} \Lambda(s)\right)_{s=0}=\int d x x \cdot P(x)=\langle x\rangle$
\rightarrow Similar : $\left\langle x^{n}\right\rangle=(-1)^{n}\left(\frac{d^{n}}{d s^{n}} \Lambda(s)\right)_{s=0}$

End

Probability \& Stochastic Vrbls

