Agenda: Information, Probability, Statistical Entropy

 Information and probability simple combinatorics,. Probability distributions, joint probabilities, Stochastic variables, correlations Statistical entropy

Monte Carlo simulations

- Partition of probability
- Phase space evolution (Eta Theorem)
- Partition functions for different degrees of freedom
- Gibbs stability criteria, equilibrium

Reading Assignments Weeks 4 & 5 LN III.1- III.6:

Kondepudi Ch. 20 Additional Material

McQuarrie & Simon Ch. 3 & 4

Math Chapters MC B, E

Stochastic Variables (Observables)

Sources of stochastic observables *x* in physical sciences:

- **1)** Quantal phenomena governed by guantal wave functions and inherent statistics.
- 2) Detection of processes with imperfect coverage (efficiency $\varepsilon < 1$) and finite resolution distributing sharp observable x_0 over a range in x.

Stochastic observables *x* have a range of values

with frequencies determined by (normalized) probability

distribution P(x). Characterize P by set of **moments** of P

<**x**ⁿ> = **[x**ⁿ·**P**(**x**)**dx**; n= 0, 1, 2,...

with the **normalization** $\langle x^0 \rangle = 1$. First moment of P:

 $E(x) = \langle x \rangle = \int x \cdot P(x) dx$

second **central moment** = "variance" of P(x) $\sigma_{x}^{2} = \langle x^{2} \rangle - \langle x \rangle^{2}$

Frequency Spectrum

Expected for many repeat measurements: Distribution over bins x=const.

$$P(x) = \frac{1}{\sqrt{2\pi\sigma_X^2}} \cdot \exp\left\{-\frac{\left(x - \langle x \rangle\right)^2}{2\sigma_X^2}\right\}$$

$$\Gamma_{FWHM} = 2\sigma_x \cdot \sqrt{2\ln 2} = 2.35 \cdot \sigma_x$$

$$\sigma_x \text{ is NOT} = \text{uncertainty of } \langle x \rangle !$$

Normalized (cumulative) probability

$$P(x < x_1) = \frac{1}{\sqrt{2\pi\sigma_X^2}} \cdot \int_{-\infty}^{x_1} dx \exp\left\{-\frac{\left(x - \langle x \rangle\right)^2}{2\sigma_X^2}\right\}$$

Fundamental: Binomial A Priori Distribution

Integer random variable m = number of specific binary (Yes/No) events, out of N total. Example: decay of m (from a sample of N) radioactive atoms, or m "head" up (out of N flips of a coin).

p = probability for a (one) success (coin head is up, decay of 1 exc. atom)

Choose an arbitrary sample of *m* trials out of *N* total trials (possibilities) $p^m = probability for at least$ *m*successes (no conditions)(1-p)^{N-m} = probability for*N-m*failures (coin tail, survivals)

Probability for exactly *m* successes out of a total of *N* trials

$$P(m) \propto p^{m} \cdot (1-p)^{N-m}$$

ways m events be `chosen' out of N identical ? \rightarrow Binomial coefficient

$$\binom{N}{m} = \frac{N!}{m!(N-m)!} = \frac{(N-m+1)\cdots N}{1\cdots m}$$

Total probability (expected success rate) for any sample of *m* identical events: $P_{binomial}(m) = {N \choose m} \cdot p^m \cdot (1-p)^{N-m}$

Probability for *m* out of N identical events

$$P_{binomial}(m) = \binom{N}{m} \cdot p^m \cdot (1-p)^{N-m}$$
Binomial coefficient

$$\binom{N}{m} = \frac{N!}{m!(N-m)!} = \frac{(N-m+1)\cdots N}{1\cdots m}$$

വ

Total probability for any *m* out of *N* identical events:

Proper normalization:
$$\sum_{m=1}^{N} P(m) = \sum_{m=1}^{N} {N \choose m} \cdot p^{m} \cdot (1-p)^{N-m} = 1$$

Mean value $\mu = \langle m \rangle = N \cdot p$; Variance $\sigma_m^2 = N \cdot p \cdot (1-p)$

$$\langle m^{\nu} \rangle = \sum_{m=0}^{N} m^{\nu} \cdot P(m) = \sum_{m=0}^{N} m^{\nu} \cdot {\binom{N}{m}} p^{m} (1-p)^{N-m}$$

Poisson Probability Distribution

Limit of binomial distribution $Lim_{p\to 0,N\to\infty}P_{binomial}(N,m) = P_{Poisson}(\mu,m)$

Probability for observing m events when average is $\langle m \rangle = \mu$

$$P_{Poisson}(\mu,m) = \frac{\mu^m \cdot e^{-\mu}}{m!}$$

$$\mu = \langle m \rangle = N \cdot p \quad \text{for } N \gg 1$$

and
$$\underline{\sigma^2 = \mu}$$

For radioactive decays $[\Delta t^{-1}] \rightarrow p = \frac{Activity}{N(\#atoms)}$ $p \ll 1 \rightarrow \sigma_m^2 \approx \langle m \rangle \#counts$

Observe *m* counts (events) \rightarrow \rightarrow statistical uncertainty is $\pm \sigma_m = \pm \sqrt{m}$ Useful when only a mean rate is known for sample survival or decay.

¹³⁷Cs = unstable isotope, decays with $t_{1/2} = 27$ years → $p = \ln 2/27 = 0.026/a = 8.2 \cdot 10^{-10} s^{-1}$ → small

Sample of 1 μ g: N = 10¹⁵ particles (= # trials for decay) How many will decay?

$$\mu = N \cdot p = 8.2 \cdot 10^{+5} \, s^{-1}$$

Count rate estimate $dN/dt = (8.2 \cdot 10^{+5} \pm 905) s^{-1}$ fluctuation Probability for m decays $P(\mu,m) =$

$$P_{Poisson}(\mu,m) = \frac{\mu^m \cdot e^{-\mu}}{m!} = \frac{(8.52 \cdot 10^5)^m \cdot e^{-8.52 \cdot 10^5}}{m!}$$

~

Poisson Probability Distribution

Binomial distribution in the limit of small p and large N $(N \cdot p > 0)$

$$\lim_{\substack{p \to 0 \\ and N \to \infty}} P_{binomial}(N,m) = P_{Poisson}(\mu,m)$$

Poisson Distributions . 0.8 Pp(0.5, m)**Pp (μ, m)** Pp(3,m)0.6 Pp(5,m)Φ Pp(10,m)0.4 0.2 0 5 10 15

m

Probability for observing m events when average is $\langle m \rangle = \mu$

$\mu = \langle m \rangle = N \cdot p$ and $\sigma^2 = \mu$

is the mean, the average number of successes in N trials.

Observe N counts (events) \rightarrow \rightarrow uncertainty is $\sigma = \sqrt{\mu}$

Unlike the binomial distribution, the Poisson distribution does not depend explicitly on p or N !

 \rightarrow With increasing p (<1.0):

Poisson \rightarrow Gaussian (Normal 20 Distribution)

ω

$$P_{binomial}(N,m,p) = {N \choose m} p^m (1-p)^{N-m}$$

Probability for m "successes" out of N trials, individual probability p

Measurement mean and variance ('uncertainty') $\overline{m} = N \cdot p \approx N_{obs}$ and $\sigma_m^2 = N \cdot p \cdot (1-p) \approx N_{obs}$ $N_{obs} = \# of$ "counts" observed, $p \ll 1.0$

Statistical "error" of
$$N_{obs}$$
: $\sigma_m \approx \sqrt{N_{obs}}$

$$\frac{\sigma_m}{\overline{m}} = \frac{\sqrt{N \cdot p \cdot (1 - p)}}{N \cdot p} \approx \frac{1}{\sqrt{N_{obs}}}$$

 \rightarrow more counts = smaller error

Observe Poisson → Gaussian/Normal

$$\lim_{\substack{p \to 1 \\ N \to \infty}} P_{bin}(N, m, p) = \frac{1}{\sqrt{2\pi\sigma_m^2}} \cdot \exp\left\{-\frac{\left(x - \langle m \rangle\right)^2}{2\sigma_m^2}\right\}$$

Distributions P(m) approximates Gaussian very fast, already good for p=0.2-0.3

W. Udo Schröder 2023

δ

Means (averages) of different samples of a large population data set cluster together closely. \rightarrow general property of samples of stochastic variables

5

The distribution of the **sample means** approaches a Gaussian normal distribution with increasing size of the sample, *regardless of the form of the original (population) distribution*.

The mean (average) of a distribution of stochastic data does not contain information on the actual shape of the distribution.

The average of any truly random sample of a population is already close to the true population average. Considering many samples, or large samples, narrows the choices. The Gaussian width becomes narrower for larger samples. \rightarrow The standard error of the mean decreases as the sample size increases.

Continuous Probability Distributions

Degrees of freedom $\{x, y, ...\} \rightarrow Joint$ Probability P(x, y, ...)

Define normalized Gaussian probability Normalized Probability $\iiint dx dy \cdots P(x, y, ...) \equiv 1$ Partial or conditional probability $P(x) = \iiint dx dy \cdots P(x, y, ...) < 1$ $P(x = a) = \iiint dx dy \cdots P(x, y, ...) \delta(x - a) < 1$

Average
$$\langle x \rangle_P = \int_0^\infty x \cdot P(x, y, ...) dx \cdot dy...$$

and $\sigma_x^2 = \left\langle \left(x - \langle x \rangle \right)^2 \right\rangle_P$

$$P(x) = \frac{1}{\sqrt{2\pi\sigma_x^2}} \cdot \exp\left\{-\frac{\left(x - \langle x \rangle\right)^2}{2\sigma_x^2}\right\}$$

Continuous Probability Distributions

Degrees of freedom $\{x, y, ...\} \rightarrow Joint$ Probability P(x, y, ...)

Define normalized Gaussian probability Normalized Probability $\iiint dx dy \cdots P(x, y, ...) \equiv 1$ Partial or conditional probability $P(y) = \iiint dx \cdots P(x, y, ...) < 1$ $P(y = b) = \iiint dx dy \cdots P(x, y, ...) \delta(y - b) < 1$

Average
$$\langle \mathbf{y} \rangle_{P} = \int_{0}^{\infty} \mathbf{y} \cdot P(\mathbf{x}, \mathbf{y}, \dots) d\mathbf{x} \dots$$

and $\sigma_{\mathbf{y}}^{2} = \left\langle \left(\mathbf{y} - \langle \mathbf{y} \rangle \right)^{2} \right\rangle_{P}$

$$P(\mathbf{y}) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \cdot \exp\left\{-\frac{\left(\mathbf{y} - \langle \mathbf{y} \rangle\right)^2}{2\sigma_y^2}\right\}$$

Correlations in Joint Distributions

For independent events (d.o.f) probabilities multiply. Correlations within distributions. Example: *y* increases with increasing *x*

$$= \frac{1}{\sqrt{4\pi^2 \sigma_x^2}} \cdot \exp\left\{-\left[\frac{\left(x - \langle x \rangle\right)^2}{2\sigma_x^2} + \frac{\left(y - \langle y \rangle\right)^2}{2\sigma_y^2}\right]\right\}$$

$$P_{corr}(x, y) = \frac{1}{2\pi\sqrt{\sigma_x^2 \sigma_y^2 - \sigma_{xy}^2}} \cdot \exp\left\{-\frac{\left(x - \langle x \rangle\right)^2 \sigma_x^2 + \left(y - \langle y \rangle\right) \sigma_y^2 - 2\left(x - \langle x \rangle\right)\left(y - \langle y \rangle\right) \sigma_{xy}}{2\left(\sigma_x^2 \sigma_y^2 - \sigma_{xy}^2\right)}\right\}$$

Covariance:
$$\sigma_{xy} = \int (x - \langle x \rangle) \cdot (y - \langle y \rangle) \cdot P(x, y) dx dy$$

$$\cot \alpha = \frac{1}{2\sigma_{xy}} \left\{ \left(\sigma_x^2 - \sigma_y^2\right) + \sqrt{\left(\sigma_x^2 - \sigma_y^2\right)^2 + 4\sigma_{xy}^2} \right\}$$

correlation coefficient $r_{xy} = \sigma_{xy} / (\sigma_x \sigma_y); -1 \le r_{xy} \le 1$

Probability Generating Functions

Example : 1 - dimensional system P(x)

Characteristic functions of P(x)(same info) Laplace transformation of P

$$\Lambda(s) \coloneqq \int dx \, e^{-s \cdot x} \, P(x)$$

Derivatives of $\Lambda(s)$:

 $\frac{d^{n}}{ds^{n}} \Lambda(s) \coloneqq \frac{d^{n}}{ds^{n}} \int_{0}^{\infty} dx \, e^{-s \cdot x} P(x)$ $= (-)^{n} \int_{0}^{\infty} dx \, x^{n} \, e^{-s \cdot x} P(x)$ $(\text{Set } s=0) \longrightarrow -\left(\frac{d}{ds} \Lambda(s)\right)_{s=0} = \int dx \, x \cdot P(x) = \langle x \rangle$

 \rightarrow similar :

$$\langle x^n \rangle = (-1)^n \left(\frac{d^n}{ds^n} \Lambda(s) \right)_{s=0}$$
14

Combin Stoch Vrbl

End Probability & Stochastic Vrbls

W. Udo Schröder 2023

Combin Stoch Vrbl