
Agenda: Information, Probability, Statistical Entropy

• Information and probability

simple combinatorics,.

Probability distributions, joint probabilities, 

Stochastic variables, correlations

Statistical entropy

Monte Carlo simulations 

• Partition of probability

• Phase space evolution (Eta Theorem)

• Partition functions for different degrees of freedom

• Gibbs stability criteria, equilibrium
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Reading 

Assignments

Weeks 4 & 5

LN III.1- III.6:

Kondepudi Ch. 20 

Additional Material

McQuarrie & Simon

Ch. 3 & 4

Math Chapters 

MC B, E 
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Stochastic Variables (Observables)

Sources of stochastic observables x in physical sciences: 

1) Quantal phenomena governed by quantal wave 
functions and inherent statistics.

2) Detection of processes with imperfect coverage 
(efficiency e < 1) and finite resolution distributing 

sharp events sharp observable x0 over a range in x. 

Stochastic observables x have a range of values 

with frequencies determined by (normalized) probability 

distribution P(x). Characterize P by set of moments of P

<xn> = ∫ xn·P(x)dx;    n= 0, 1, 2,…

with the normalization <x0> = 1.  First moment of P: 

E(x) = <x> = ∫x·P(x) dx

second central moment = “variance” of P(x)
sx

2 = <x2>-<x>2

Observable x →

Observable x →
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N
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x
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Frequency Spectrum
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Normal Distribution of a Stochastic (Random) Variable
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Integer random variable m = number of specific binary (Yes/No) events, 
out of N total. Example: decay of m (from a sample of N ) radioactive 
atoms, or m “head” up (out of N flips of a coin ).

p = probability for a (one) success (coin head is up, decay of 1 exc. atom)

Choose an arbitrary sample of m trials out of N total trials (possibilities) 

pm = probability for at least m successes (no conditions)

(1-p)N-m = probability for N-m failures (coin tail, survivals)

Probability for exactly m successes out of a total of N trials 

# ways m events be ‘chosen’ out of N identical ? → Binomial coefficient

Total probability (expected success rate) for any sample of m identical 
events:

Fundamental: Binomial A Priori Distribution
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Probability for m out of N identical events           Binomial coefficient

Binomial Distribution
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Poisson Probability Distribution
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Radioactive Decay as Poisson Process

Useful when only a mean rate is known for sample survival or decay. 

137Cs = unstable isotope, decays with
t1/2 = 27 years → p = ln2/27 = 0.026/a = 8.2·10-10s-1

→ small 

Sample of 1 g: N = 1015 particles (= # trials for decay)

How many will decay? 

 = N·p = 8.2·10+5 s-1

Count rate estimate dN/dt = (8.2·10+5 ± 905) s-1

fluctuation
Probability for m decays P (,m) = 

55 8.52 10(8.52 10 )
( , )

! !

m m

Poisson

e e
P m

m m
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Poisson Probability Distribution
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is the mean, the average number of 
successes in N trials.

Observe N counts (events) →
→ uncertainty is s  = √

Unlike the binomial distribution, the  
Poisson distribution does not 
depend explicitly on p or N !

→ With increasing p (<1.0):

Poisson → Gaussian (Normal 

Distribution)

Binomial distribution in the limit of 
small p and large N  (N·p > 0)

0
lim ( , ) ( , )

→
→

=binomial Poisson
p

and N

P N m P m

Pp (, m)

m=
0,1,2,
…



0 5 10 15 20
0

0.1

0.2

0.3
Binomial Distributions N=30

0.236

0

Pb N m 0.1( )

Pb N m 0.3( )

200 m

W. Udo Schröder 2023

C
om

b
in

 S
to

ch
 V

rb
l

9

Distribution Moments and Limits
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Central-Limit Theorem

The distribution of the sample means approaches a Gaussian

normal distribution with increasing size of the sample, regardless

of the form of the original (population) distribution.

Means (averages) of different samples of a large population data set cluster 

together closely. → general property of samples of stochastic variables

The mean (average) of a distribution of stochastic data does not contain 
information on the actual shape of the distribution.

The average of any truly random sample of a population is already close to 
the true population average. Considering many samples, or large samples, 
narrows the choices. The Gaussian width becomes narrower for larger 
samples. → The standard error of the mean decreases as the sample size 

increases.



Continuous Probability Distributions
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Continuous Probability Distributions
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Correlations in Joint Distributions

For independent events (d.o.f) probabilities multiply. Correlations within 
distributions.  Example: y increases with increasing x
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Probability Generating Functions
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