Agenda: Information, Probability, Statistical Entropy

- Information and probability simple combinatorics.
Probability distributions, joint probabilities. stochastic variables, correlations.
Statistical entropy

Monte Carlo simulations

- Partition of probability
- Phase space evolution (Eta Theorem)
- Partition functions for different degrees of freedom
- Gibbs stability criteria, equilibrium

Reading

Assignments
Weeks 4 \& 5
LN III.1- III.6:

Kondepudi Ch. 20
Additional Material
McQuarrie \& Simon
Ch. 3 \& 4
Math Chapters
MC B, E

Aspects of Information Theory

In the absence of information, probability replaces certainty. Information theory provides probability as an objective link be-tween randomness and certainty.
Important theorist

Claude Shannon, "Father of Information Theory"
"If a situation (event) is very likely to occur (high probability) \rightarrow information provided with its occurrence is low." And vice versa.

Random positions = first guess if nothing known about particles

Particles cluster in a corner \rightarrow deduce mutual attraction
\rightarrow significant info

Illustration:
Two possible 2-dim micro-states for a system of 100 particles distributed differently over the available phase space.

Simple Probability Concepts

Probability: understood as being relative to set of many uncertain events, experiments, measurements, outcomes,

If instances of a type of event x_{n} occur in random selection, without hidden preference (bias), one can estimate

Probability $\leftrightarrow \rightarrow$ combinatorics
Conduct experiment/measurement \rightarrow probability for event type \boldsymbol{x}

$$
\begin{array}{ll}
N\left(x_{k}\right)=\text { frequency of events } x_{k} & \begin{array}{l}
\text { Probability } \\
\\
\text { a posteriori }
\end{array}
\end{array} \quad P\left(x_{n}\right)=\operatorname{Lim}_{N \rightarrow \infty} \frac{N\left(x_{n}\right)}{\sum_{k} N\left(x_{k}\right)}
$$

Example: experiment (unbiased) rolling 1 dice 1000x \rightarrow
Expect (a priori) face with "6" $P(6)=1 / 6=0.1667 \rightarrow N(6)=166$ (167)
observe (a posteriori) face with " 6 " $: N(6)=173 \rightarrow P(6)=0.173 \approx 1 / 6$

Probability Distributions

Conduct many ($M=5$) measurements of 1000 rolls of one die $\rightarrow M-5$ different probabilities for event type $\boldsymbol{x}=$ "6"
\rightarrow a posteriori probability
$N\left(x_{k}\right)=$ frequency of events x_{k}
$\{N(6)\}=\{175,160,155,167,182\}$

$$
P_{i}(6)=\operatorname{Lim}_{N \rightarrow \infty} \frac{N_{i}(6)}{\sum_{k}^{1 \cdots 6} N_{i}(k)} ; \quad i=1, . ., M
$$

Mean/average probability

$\langle P(6)\rangle_{i}:=\sum_{i=1}^{M} w_{i} \cdot P(6)_{i}=\sum_{i=1}^{M} \frac{1}{M} \cdot P(6)_{i}$
Measurements of equal quality
\rightarrow Equal weights $w_{i}=1 / M$

$$
\rightarrow\langle P(6)\rangle_{i}=0.168
$$

Measurement \# i

Probability Distributions

Conduct many ($M=5$) measurements of 1000 rolls of one die $\rightarrow M-5$ different probabilities for event type $\boldsymbol{x}=$ "6"
\rightarrow a posteriori probability
$N\left(x_{k}\right)=$ frequency of events x_{k}
$\{N(6)\}=\{175,160,155,167,182\}$

$$
P_{i}(6)=\operatorname{Lim}_{N \rightarrow \infty} \frac{N_{i}(6)}{\sum_{k}^{1 \ldots 6} N_{i}(k)} ; \quad i=1, \ldots, M
$$

Variance/Standard Deviation

$$
\begin{aligned}
& \sigma_{P}^{2}(6):=\frac{1}{M(M-1)} \sum_{i=1}^{M}\left(P(6)_{i}-\langle P\rangle\right)^{2} \\
& \sigma_{P}^{2}(6)=2.4 \cdot 10^{-5} \rightarrow \sigma_{P}(6)=0.005
\end{aligned}
$$

$$
\neg P(6)\rangle_{i}=\left(0.168_{\uparrow} \pm 0.005\right)
$$

Measurement \# i

$$
\text { a priori }: P(6)=1 / 6=0.167
$$

Probability Combinations

Additive, inclusive or exclusive, cumulative,
 multiplicative, conditional probabilities.

Sum \& product rules for disjoint (independent) probabilities

Outcome of one trial (\rightarrow Event E1) has no effect on the result of the next trial (\rightarrow Event E2). The corresponding probabilities are independent of one another and add
A priori probability to get a face " 6 " in either of two trials, the first or the second throw of a dice, equals the sum of both

$$
P_{1 v 2}(6)=P_{1}(6)+P_{2}(6)=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}
$$

OR inclusive

Simultaneous (joint) a priori probability to get a face " 6 " in both trials, the first and the second throw of a dice, equals the product of both

$$
P_{1 \wedge 2}(6 \mid 6)=P_{1}(6) \cdot P_{2}(6)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}
$$

Properties of a priori Probabilities

- The probability for an event is $0 \leq P \leq 1$
- The probability of an impossible event is zero, $P=0$.
- The probability for one of the possible outcomes to occur is $P=\sum_{i} P_{i}=1$
- If two events (E1 and E2) are independent (disjoint, mutually
exclusive), the probability of the sum ("OR") event is the sum of the probabilities, $\quad P_{1 v 2}=P_{1}+P_{2}$
- If two events are not mutually exclusive, $P_{1 \vee 2}=P_{1}+P_{2}-P_{1 \wedge 2}$
- If two events (E 1 and E 2) are independent (not mutually exclusive), the probability for simultaneous occurrence is the product $P_{1 \wedge 2}=P_{1} \cdot P_{2}$
- Additional considerations for conditional (marginal) probabilities, example $P\left\{E_{1} \mid E_{2}\right\}:=\operatorname{Probability}\left\{E_{1}\right\}$, given E_{2}

Conditional Probabilities

Constraints on a set of events \rightarrow conditional probability $P\{E \mid$ condition $\}$.
Example drawing from 3 balls (R, G, G) hidden in a box. What are a priori probabilities for a sequence 1. draw, 2. draw,.... e.g. $G_{2}, R_{1} \ldots$
Depends on 1. draw returned or not! If returned, uncorrelated draws \rightarrow

$$
P\left(G_{2} R_{1}\right)=P\left(G_{2}\right) \cdot P\left(R_{1}\right)=\frac{2}{3} \cdot \frac{1}{3}=\frac{2}{9}
$$

If ball is not returned, correlated=conditional draws \rightarrow

$$
P\left(G_{2} R_{1}\right) \rightarrow P\left\{G_{2} \mid R_{1}\right\} \cdot P\left(R_{1}\right)=1 \cdot \frac{1}{3}=\frac{1}{3}
$$

3. draw

$$
P\left(G_{3} G_{2} R_{1}\right)=P\left\{G_{3} \mid G_{2} R_{1}\right\} \cdot P\left(G_{2} R_{1}\right)=1 \cdot \frac{1}{3}=\frac{1}{3}
$$

Statistical Event Domains

Possible relations are illustrated between hypothetical domains of probable events

$$
P\left\{E_{1}\right\}, P\left\{E_{2}\right\}, \text { and } P\left\{\neg E_{1} \vee \neg E_{2}\right\}
$$

Independent events E_{1} and E_{2} or if $E_{1} \subset E_{2} \rightarrow E_{2}$ has no influence on the probability for $E_{1} \rightarrow$ Conditional

$$
P\left\{E_{1} \mid E_{2}\right\}\left(\text { given } E_{2}=T\right)=P\left\{E_{1}\right\}
$$

If two events are mutually exclusive,

$$
P\left\{E_{1} \wedge E_{2}\right\}=0=P\left\{E_{1} \mid E_{2}\right\}
$$

$$
\text { If } E_{1}, E_{2} \text { not disjoint: }
$$

$$
\begin{aligned}
P\left\{E_{1} \wedge E_{2}\right\} & =P\left\{E_{1} \mid E_{2}\right\} \cdot P\left(E_{2}\right) \\
& =P\left\{E_{2} \mid E_{1}\right\} \cdot P\left(E_{1}\right)
\end{aligned}
$$

Fractional probability for

$$
E_{2}=T\left(\text { if } E_{1}=T\right) / \text { Total } P\left(E_{2}\right)
$$

Prior probability $P\left(E_{1}\right)=$ suspicion, guess

Bayes' Theorem: Rain or Sun ?

Datum $P\left\{E_{1} \mid \text { given } E_{2}=\text { rain }\right\}=0.8$	$\begin{aligned} & E_{2}=\text { partly cloudy } \\ & P\left\{E_{2}\right\}=0.42 \end{aligned}$ Event $E_{1}=$ people carry umbrellas $P\left\{E_{1}\right\}=0.20$ $E_{2}=$ other reasons $P\left\{E_{1} \mid E_{2}\right\}=0.1$	$P\left\{E_{2}=\operatorname{sun}\right\}=0.33$ Datum $P\left\{E_{1} \mid \text { given } E_{2}=\text { sun }\right\}=0.1$

Prob for $E_{2}=$ rain when observing umbrellas
$P\left\{E_{2}=\right.$ rain $\mid E_{1}$-umbr. $\}=P\left(E_{2}=r\right) \cdot \frac{P\left\{E_{1}=u \mid E_{2}=r\right\}}{P\left(E_{1}=u\right)}=0.25 \cdot \frac{0.8}{0.2}=1$

Discrete Multivariate Probability Distributions

Bias Test: Randomly draw colored dies ($i=1-5$) out of bag. Roll each die many times and record face frequencies ($j=1, \ldots, 6$). Normalize to total \# rolls. $\rightarrow \operatorname{dim}\left\{\boldsymbol{p}_{i j}\right\}$ domain $=5 \times 6=30 \rightarrow$ Data must fulfill independent constraints:

$$
\text { Color } u_{i}=\sum_{j=1}^{6} p_{i j} \rightarrow \sum_{i=1}^{5} u_{i}=1 \quad \text { Face } v_{j}=\sum_{j=1}^{5} p_{i j} \rightarrow \sum_{j=1}^{6} v_{j}=1
$$

Color i	Face $j \longrightarrow$						
red			2	3	4	5	6
blue							$u_{i}=\sum_{j=1}^{6} p_{i j}$
green							$u_{1}=0.10$
white							$u_{3}=0.20$
black							$u_{4}=0.25$
							$u_{2}=0.30$
$v_{j}=\sum_{i=1}^{5} p_{i j}$	0.131	0.148	0.163	0.162	0.200	0.196	Data

Discrete Multivariate Probabilities

Compare a priori with posteriori probabilities to find bias. Example: blue die with face "4" from overlap (simultaneous) probability domains.

A priori : $P($ blue, any \# $)=1 / 5 ; \quad P($ any, 4$)=1 / 6 \rightarrow P($ blue $) \wedge P(4)=1 / 30=0.033$
A posteriori : $P($ blue $) \wedge P(4)=u_{2} \cdot v_{4}=0.3 \cdot 0.162=0.049$

But 0.049/0.033 $\approx 1.5=u_{2} / 0.2$

iv	1	2	3	4	5	6	$u_{i}=\sum_{j=1}^{6} p_{i j}$
red	0.016	0.018	0.018	0.017	0.015	0.016	$u_{1}=0.10$
blue	0.025	0.035	0.045	0.055	0.065	0.075	$u_{2}=0.30$
green	0.030	0.028	0.032	0.030	0.050	0.030	$u_{3}=0.20$
white	0.040	0.042	0.038	0.040	0.040	0.050	$u_{4}=0.25$
black	0.020	0.025	0.030	0.020	0.030	0.025	$u_{5}=0.15$
$v_{j}=\sum_{i=1}^{5} p_{i j}$	$\begin{gathered} v_{1} \\ 0.131 \end{gathered}$	$\begin{gathered} v_{2} \\ 0.148 \end{gathered}$	$\begin{gathered} v_{3} \\ 0.163 \end{gathered}$	$\begin{gathered} v_{4} \\ 0.162 \end{gathered}$	$\begin{gathered} v_{5} \\ 0.200 \end{gathered}$	$\begin{gathered} v_{6} \\ 0.196 \end{gathered}$	

Data from Dill \& Bromberg

End Probability \& Combinatorics

