
Agenda: Information, Probability, Statistical Entropy

• Information and probability

simple combinatorics.

Probability distributions, joint probabilities.

stochastic variables, correlations.

Statistical entropy

Monte Carlo simulations 

• Partition of probability

• Phase space evolution (Eta Theorem)

• Partition functions for different degrees of freedom

• Gibbs stability criteria, equilibrium
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Reading 

Assignments

Weeks 4 & 5

LN III.1- III.6:

Kondepudi Ch. 20 

Additional Material

McQuarrie & Simon

Ch. 3 & 4

Math Chapters 

MC B, E 



Aspects of Information Theory

In the absence of information, probability replaces certainty.

Information theory provides probability as an objective link 
be-tween randomness and certainty. 

Important theorist 
Claude Shannon, “Father of Information Theory”
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Illustration: 

Two possible 2-dim micro-states for 

a system of 100 particles distributed 

differently over the available phase 

space.

Random positions 
= first guess if 
nothing known 
about particles

“If a situation (event) is very likely to occur (high probability) →

information provided with its occurrence is low.” And vice versa.

Particles cluster in 
a corner → deduce
mutual attraction
→ significant info

Claude Shannon 
1948
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Simple Probability Concepts

Probability: understood as being relative 
to set of many uncertain events,  
experiments, measurements, outcomes, 
…
If instances of a type of event xn occur 
in random selection, without hidden 
preference (bias), one can estimate

Probability → combinatorics
Conduct experiment/measurement →

probability for event type x

( )k k
N frequency o nx f eve ts x=

( )

( )k

N

k

n

n
P

x
x = Lim

N
( )

N x
→


Probability  
a posteriori

Example: experiment (unbiased) rolling 1 dice 1000x →

Expect (a priori) face with “6”  P(6) = 1/6 = 0.1667 → N(6) = 166 (167)

observe (a posteriori) face with “6” : N(6) = 173 → P(6) = 0.173 ≈ 1/6
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Probability Distributions

Conduct many (M=5) measurements of 
1000 rolls of one die → M-5 different 

probabilities for event type x =“6”
→ a posteriori probability 

( )k k
N frequency o nx f eve ts x=

( )

( )
1 6

; 1,..
6

6 ,i

i
N

i
k

N
P( ) = Lim i M

kN
→

=



Mean/average probability

{N(6)}= {175, 160, 155, 167, 182}

0.1

0.2

0

6
i

P ( )

Measurement # i

( ) ( ) ( )
1 1

1
6 : 6 6

M M

i i ii
i i

P w P P
M= =

=  =  

( )

1

6 0.168

i

i

Measurements of equal quality

Equal weights w M

P

→ =

→ =
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Probability Distributions

Conduct many (M=5) measurements of 
1000 rolls of one die → M-5 different 

probabilities for event type x =“6”
→ a posteriori probability 

( )k k
N frequency o nx f eve ts x=

( )

( )
1 6

; 1,..
6

6 ,i

i
N

i
k

N
P( ) = Lim i M

kN
→

=



Variance/Standard Deviation

{N(6)}= {175, 160, 155, 167, 182}

0.1

0.2

0

6
i

P ( )

Measurement # i

( ) ( )( )

( ) ( )

2
2

1

2 5

1
6 : 6

( 1)

6 2.4 10 6 0.005

M

P i
i

P P

P P
M M



 

=

−

= −
−
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( ) ( )6 0.168 0.005
i

P = 

( ): 6 1 6 0.167a prio Pri = =
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Probability Combinations

Additive, inclusive or exclusive, cumulative, 

multiplicative, conditional probabilities. 

Sum & product rules for disjoint (independent) 

probabilities

Outcome of one trial (→Event E1) has no effect 

on the result of the next trial (→Event E2).  The 

corresponding probabilities are independent of 

one another and add

A priori probability to get a face “6” in either of two trials, the first or the 

second throw of a dice, equals the sum of both

1 2 1 2

1 1 1
P (6) P (6) P (6)

6 6 3
 = + = + =

Simultaneous (joint) a priori probability to get a face “6” in both trials, 

the first and the second throw of a dice, equals the product of both

1 2 1 2

1 1 1
P (6 | 6) P (6) P (6)

6 6 36
 =  =  =

OR inclusive

AND 



Properties of a priori Probabilities 

• The probability for an event is 0 ≤ P ≤ 1

• The probability of an impossible event is zero, P = 0.

• The probability for one of the possible outcomes to occur is   

• If two events (E1 and E2) are independent (disjoint, mutually 

exclusive), the probability of the sum (“OR”) event is the sum of the 

probabilities,  

• If two events are not mutually exclusive,

• If two events (E1 and E2) are independent (not mutually exclusive), the 

probability for simultaneous occurrence is the product   

• Additional considerations for conditional (marginal) probabilities, 

example 
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1 2 1 2P P P = +

1 2 1 2P P P = 

1 2 1 2 1 2P P P P = + −

   1 2 1 2P E | E : Probability E , given E=

1i
i

P P= =



Conditional Probabilities

Constraints on a set of events → conditional probability P{E|condition}.

Example drawing from 3 balls (R, G, G) hidden in a box. What are a priori 
probabilities for a sequence 1. draw, 2. draw,…. e.g. G2,R1…

Depends on 1. draw returned or not! If returned, uncorrelated draws →
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( ) ( ) ( )2 1 2 1

2 21
P G R P G P R =

3 3 9
=  = 

If ball is not returned, correlated=conditional 
draws →

( )   ( )122 11
1

1

3

1
|

3
P G R RG PP R→  =  =

Given that Red was drawn first

3. draw ( )   ( )1 13 2 2 13 2
|

1 1
P G G R P G R =

3 3
G G 1RP=  =



Statistical Event Domains

Possible relations are illustrated between hypothetical domains of probable events           
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     and  1 2 1 2P E , P E , P E E  

Independent  events E1 and E2 or if 
E1 E2 → E2 has no influence on the 

probability for E1 → Conditional

 ( )  121 2E giveP n E TE | P E= =

If two events are mutually exclusive,

   1 2 1 2P E E 0 P E | E = =

  ( )
 
( )
2 1

1 2 1
2

P E | E
P E | E P E

P E
= 

( )1Prior probability P E suspicion, guess=

( )2 1 2

Fractional probability for

E T(if E T ) / Total P E= =

2E

 1 2P E | E 0

    ( )

  ( )

1 2

1 2 1 2 2

2 1 1

If E ,E not disjo int :

P E E P E | E P E

P E | E P E

 = 

= 



Rain or Sun ?
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1 2

E other

reasons

P E | E 0.1

=

=

 2P E rain 0.25= =

 1 2

Datum

P E | given E rain 0.8= =

 2P E sun 0.33= =

 1 2

Datum

P E | given E sun 0.1= =

 

1

1

Event E

people carry

umbrellas

P E 0.20

=

=

 
2

2

E partly cloudy

P E 0.42

=

=

  ( )
 

( )

2

1 2
2 1 2

1

Prob for E rain when observing umbrellas

P E u | E r 0.8
P E rain| E umbr. P E r 0.25 1

P E u 0.2

=

= =
= − = =  =  =

=



Discrete Multivariate Probability Distributions

Bias Test: Randomly draw colored dies (i=1-5) out of bag. Roll each die many 

times and record face frequencies (j=1,….,6). Normalize to total # rolls. 

→dim{pij} domain =5x6=30 →Data must fulfill independent constraints:
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After Dill & Bromberg

6 5 5 6

1 1 1 1

1 1Facei ij i j ij j
j i j j

C o u pol r u p 
= = = =

= → = = → =   

Color
i

Face j

24p

Data



Discrete Multivariate Probabilities

Compare a priori with posteriori probabilities to find bias. Example: blue 
die with face “4” from overlap (simultaneous) probability domains.
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Data from Dill & Bromberg

2 4

: ( , #) 1 5; ( ,4) 1 6 ( ) (4) 1 30 0.033

( ) (4 9: ) 0.3 0.162 0.04

A P blue any P ai n

l

prior

A p

y P blue P

P b ue Ps uo teriori 

= = →  = =

 =  =  =

20.049 0.033 1.5 0.2But u =
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End 
Probability & Combinatorics
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