Agenda: Information, Probability, Statistical Entropy

Information and probability
simple combinatorics.
Probability distributions, joint probabilities.
stochastic variables, correlations.
Statistical entropy

Reading
Assignments
Weeks 4 & 5
LN 1.1~ 1ll.6:

Kondepudi Ch. 20
Additional Material

McQuarrie & Simon
Ch.3&4

Math Chapters
MC B, E




Aspects of Information Theory

In the absence of information, probability replaces certainty.
Information theory provides probability as an objective link

be-tween randomness and certainty. H Z & lakst
== Pl logp(x

Important theorist

gﬁ‘%ﬂ‘sﬂ’” Claude Shannon, “Father of Information Theory”

“If a situation (event) is very likely to occur (high probability) =2
information provided with its occurrence is low.” And vice versa.
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Random positions
= first guess if
nothing known
about particles

Particles cluster in
a corner = deduce
mutual attraction
- significant info

lllustration:

Two possible 2-dim micro-states for
a system of 100 particles distributed
differently over the available phase
space.
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Simple Probability Concepts

Probability: understood as being relative
to set of many uncertain events,
experiments, measurements, outcomes,

If instances of a type of event x, occur
in random selection, without hidden
preference (bias), one can estimate

Probability €<-> combinatorics
Conduct experiment/measurement >
probability for event type x

N(x,) = frequency of events x, PrObablllt}/ _ P(x.) = ILVI—QZ (
a posteriori

Example: experiment (unbiased) rolling 1 dice 1000x >
Expect (a priori) face with “6” P(6) = 1/6 = 0.1667 > N(6) = 166 (167)

observe (a posteriori) face with *6” : N(6) = 173 = P(6) = 0.173 = 1/6
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Probability Distributions

S
N

R(6)

0.1

Conduct many (M=5) measurements of

Measurement # i

1000 rolls of one die > M-5 different
probabilities for event type x ="6"
- a posteriori probability

N(x,) = frequency of events x,

{N(6)}= {175, 160, 155, 167, 182}

P(6) = Lim+ S i=1,..,M

-6

ZN()

Mean/average probability
M1

(P(6)),: ZW P(6), =X

i=1

-P(6).

1

Measurements of equal quality
— Equal weights w; = 1/M

— (P(6)), = 0.168



Probability Distributions

Conduct many (M=5) measurements of
1000 rolls of one die > M-5 different
probabilities for event type x ="6"

- a posteriori probability

N(x,) = frequency of events x,

{N(6)}= {175, 160, 155, 167, 182}

P(6) = Lim &) i=1,..,M

0.2 1 SN

R(6)

Variance/Standard Deviation

7(6) = ey 2 (P(6), - (P))

/=

0.1
o5 (6)=2.4-10" — o, (6) = 0.005

m)(P (6)). = (0.168,+0.005)

a priori : P(6)=1/6 = 0.167

Measurement # i
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Probability Combinations

Additive, inclusive or exclusive, cumulative,
multiplicative, conditional probabilities.

Sum & product rules for disjoint (independent)
probabilities

Outcome of one trial (=>Event E1) has no effect
on the result of the next trial (>Event E2). The
corresponding probabilities are independent of

one another and add

A priori probability to get a face “6” in either of two trials, the first or the
second throw of a dice, equals the sum of both

1 1 1 i i
P, ,(6)=P,(6)+P)(6)==+=== OR inclusive
6 6 3
Simultaneous (joint) a priori probability to get a face “6” in both trials,
the first and the second throw of a dice, equals the product of both

1 1 1
P1A2(6|6):P1(6)‘P2(6):g'g=—6 AND



Properties of @ priori Probabilities

The probability for an eventis 0 <P <1

The probability of an impossible event is zero, P = 0.

The probability for one of the possible outcomes to occuris P = > P, =1
If two events (E1 and E2) are independent (disjoint, mutually .
exclusive), the probability of the sum (“OR”) event is the sum of the
probabilities, P,,, =P, + P,

If two events are not mutually exclusive, P;,, =P, + P, =P, 5

If two events (E1 and E2) are independent (not mutually exclusive), the
probability for simultaneous occurrence is the product P;,., = P; - P,
Additional considerations for conditional (marginal) probabilities,

example P{E, | E,} := Probability {E,}, given E,



Conditional Probabilities

Constraints on a set of events 2 conditional probability |P{E|condition}.

Example drawing from 3 balls (R, G, G) hidden in a box. What are a priori
probabilities for a sequence 1. draw, 2. draw,.... e.g. G,,R;...

Depends on 1. draw returned or not! If returned, uncorrelated draws >

P(GR)=P(G,) P(R,)= %; %

If ball is not returned, correlated=conditional
draws >
Given that Red was drawn first

@ 1 1

P(GR)— PG, IR}-P(R)=1-5 ==
? p 7
3. draw P(G,G,R)=P{G,|GR}-P(GR,) =1 é=é



Statistical Event Domains

Possible relations are illustrated between hypothetical domains of probable events

E; and E; independent

®

P{Ez | Ez}: P{Ez}

E; and E; overlap

P{El |E2} =0

E, includes E;

E; and E; disjoint

Bayes’ Theorem
PIE; | Ey

'D{E1 |Ez} - 'D(E1)

P(Ez)

P{E;}, P{E,}, and P{-E,v —E,)

Independent events E, and E, or if
E, C E, 2 E, has no influence on the

probability for E; = Conditional
P{E, | E,}(given E, =T) = P{E,}
If two events are mutually exclusive,

P{E, nE,} =0 =P{E,|E,)

If E,,E, not disjoint :
P{E, NE,} =P{E, | E,}-P(E,)
=P{E; | E;}-P(E,)

Fractional probability for
E, =T(if E,=T) / Total P(EZ)

Prior probability P(E,) = suspicion, guess
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Bayes’ Theorem: Rain or Sun ?

~—P|{E, = rain} = 0'25\J

P{E,|given E, =rain} = 0.8

E, = partly cloudy
P{EZ} =0.42

Event E, =

people carry
umbrellas

P{E,} =0.20

E, = other
reasons

P{E,|E,} = 0.1

Prob for E, = rain when observing umbrellas

P{E, =rain| E, —umbr.} = P(E, =

P{E, =sun} =0.33

Datum
P{E,|given E, = sun} = 0.1

P{E, =UlE, =

ri 0.8

r): P(E, =u)

=0.25 - —=1
0.2
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Discrete Multivariate Probability Distributions

Bias Test: Randomly draw colored dies (i=1-5) out of bag. Roll each die many

times and record face frequencies (j=1,....,

6). Normalize to total # rolls.

~>dim{p;} domain =5x6=30 ->Data must fulfill independent constraints:

Lk

\.‘

-
’
-
-
\

6 5 5 6
j=1 i-1 j=1 j=1

oo Face = |
i ﬂ 1 2 3 4 5 6 |ui-=73pi

j=1
red u, = 0.10
blue Po4 u; = 0.30
green uz = 0.20
white uy = 0.25
black s = 0. la

3 LS8! U2 V3 Vg Vs Vg

-7 é Pij | 0.131 | 0.148 | 0.163 | 0.162 | 0.200 | 0.196 ‘ Data
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Discrete Multivariate Probabilities

Compare a priori with posteriori probabilities to find bias. Example: blue
die with face "4” from overlap (simultaneous) probability domains.

A priori . P(blue,any #) =1/5;, P(any,4)=1/6 — P(blue) A P(4) =1/30 =0.033
A posteriori : P(blue) A P(4) =u, -v, =0.3-0.162 4 0.049

But 0.049/0.033 ~ 1.5 = 1, /0.2

i =
i ﬂ 1 2 3 4 5 6 |u - i}pu‘.
J=
@ red 0016 | 0018 | 0018 | 0017 | 0015 | 0016 |y = 0.10
@ | blue 0025 | 0035 | 0045 [ 0055 | 0065 | 0075 [u, = 0.30
@ sreen [ 0030 | 0028 | 0032 | 0030 | 0050 | 0030 | us = 0.20
w@ | white 0.040 | 0.042 | 0.038 | 0.040 | 0.040 o.osﬂ uy = 0.25
@ | black [ 0020 [ 0025 | 0030 [ 0020 | 0030 | 0025 | ws = 0.15
[ v Vs U3 Vs Us Vg
%= 2 pii| 0131 | 0148 | 0.163 | 0.162 | 0.200 |0.196




End
Probability & Combinatorics
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