Agenda: Information, Probability, Statistical Entropy

 Information and probability simple combinatorics. Probability distributions, joint probabilities. stochastic variables, correlations. Statistical entropy

Monte Carlo simulations

- Partition of probability
- Phase space evolution (Eta Theorem)
- Partition functions for different degrees of freedom
- Gibbs stability criteria, equilibrium

Reading Assignments Weeks 4 & 5 LN III.1- III.6:

Kondepudi Ch. 20 Additional Material

McQuarrie & Simon Ch. 3 & 4

Math Chapters MC B, E

Aspects of Information Theory

 \sim

In the absence of information, probability replaces certainty.

Information theory provides probability as an objective link be-tween randomness and certainty.

Important theorist Claude Shannon, "Father of Information Theory"

"If a situation (event) is very likely to occur (high probability) \rightarrow information provided with its occurrence is low." And vice versa.

Random positions = first guess if nothing known about particles

Particles cluster in a corner \rightarrow deduce mutual attraction \rightarrow significant info Illustration:

Two possible 2-dim micro-states for a system of 100 particles distributed differently over the available phase space.

Simple Probability Concepts

 $N(x_{k}) = frequency of events x_{k}$

Probability *a posteriori*

Example: experiment (unbiased) rolling 1 dice $1000x \rightarrow$

Expect (*a priori*) face with "6" $P(6) = 1/6 = 0.1667 \rightarrow N(6) = 166 (167)$

observe (*a posteriori*) face with "6" : $N(6) = 173 \rightarrow P(6) = 0.173 \approx 1/6$

Probability Distributions

Conduct many (M=5) measurements of 1000 rolls of one die $\rightarrow M-5$ different probabilities for event type x = "6" $\rightarrow a \text{ posteriori}$ probability

 $N(x_{k}) = frequency of events x_{k}$

 ${N(6)} = {175, 160, 155, 167, 182}$

$$P_{i}(6) = \lim_{N \to \infty} \frac{N_{i}(6)}{\sum_{k}^{1 \dots 6} N_{i}(k)}; \quad i = 1, \dots, M$$

Mean/average probability

$$\left\langle P\left(6\right)\right\rangle_{i} \coloneqq \sum_{i=1}^{M} w_{i} \cdot P\left(6\right)_{i} = \sum_{i=1}^{M} \frac{1}{M} \cdot P\left(6\right)_{i}$$

Measurements of equal quality \rightarrow Equal weights $w_i = 1/M$ $\rightarrow \langle P(6) \rangle_i = 0.168$

Probability Distributions

Conduct many (M=5) measurements of 1000 rolls of one die $\rightarrow M-5$ different probabilities for event type x = "6" $\rightarrow a \text{ posteriori}$ probability

 $N(x_{k}) = frequency of events x_{k}$

 ${N(6)} = {175, 160, 155, 167, 182}$

$$P_{i}(6) = \lim_{N \to \infty} \frac{N_{i}(6)}{\sum_{k}^{1 \dots 6} N_{i}(k)}; \quad i = 1, \dots, M$$

Variance/Standard Deviation $\sigma_P^2(6) \coloneqq \frac{1}{M(M-1)} \sum_{i=1}^M \left(P(6)_i - \langle P \rangle \right)^2$ $\sigma_P^2(6) = 2.4 \cdot 10^{-5} \rightarrow \sigma_P(6) = 0.005$ $\square \langle P(6) \rangle_i = (0.168 \pm 0.005)$ a priori : P(6) = 1/6 = 0.167

Probability Combinations

Additive, inclusive or exclusive, cumulative, multiplicative, conditional probabilities.

Sum & product rules for disjoint (independent) probabilities

Outcome of one trial (\rightarrow Event E1) has no effect on the result of the next trial (\rightarrow Event E2). The corresponding probabilities are independent of one another and add

A priori probability to get a face "6" in either of two trials, the first or the second throw of a dice, equals the sum of both

$$P_{1\vee 2}(6) = P_1(6) + P_2(6) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$
 OR inclusive

Simultaneous (*joint*) *a priori* probability to get a face "6" *in both* trials, the first *and* the second throw of a dice, equals the *product* of both

$$P_{1 \wedge 2}(6 \mid 6) = P_1(6) \cdot P_2(6) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$$
 AND

Properties of *a priori* Probabilities

- The probability for an event is $0 \le P \le 1$
- The probability of an impossible event is zero, P = 0.
- The probability for one of the possible outcomes to occur is $P = \sum P_i = 1$
- If two events (E1 and E2) are independent (disjoint, mutually
- exclusive), the probability of the sum ("OR") event is the sum of the probabilities, $P_{1\vee 2} = P_1 + P_2$
 - If two events are not mutually exclusive, $P_{1\vee 2} = P_1 + P_2 P_{1\wedge 2}$
 - If two events (E1 and E2) are independent (not mutually exclusive), the probability for simultaneous occurrence is the product $P_{1\land 2} = P_1 \cdot P_2$
 - Additional considerations for conditional *(marginal)* probabilities, example P {E₁ | E₂} := Probability {E₁}, given E₂

Conditional Probabilities

Constraints on a set of events \rightarrow conditional probability **P{E|condition}**. Example drawing from 3 balls (*R*, *G*, *G*) hidden in a box. What are *a priori* probabilities for a sequence 1. draw, 2. draw,.... e.g. $G_2, R_1...$

Depends on 1. draw returned or not! If returned, uncorrelated draws \rightarrow

$$P\left(G_{2}R_{1}\right) = P\left(G_{2}\right) \cdot P\left(R_{1}\right) = \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{9}$$

If ball is not returned, correlated=conditional draws \rightarrow

Given that Red was drawn first

$$P(G_2R_1) \rightarrow P\{G_2 \mid R_1\} \cdot P(R_1) = 1 \cdot \frac{1}{3} = \frac{1}{3}$$

$$P(G_{3}G_{2}R_{1}) = P\{G_{3} | G_{2}R_{1}\} \cdot P(G_{2}R_{1}) = 1 \cdot \frac{1}{3} = \frac{1}{3}$$

3. draw

Possible relations are illustrated between hypothetical domains of probable events

Bayes' Theorem
$$P\{E_1 \mid E_2\} = P(E_1) \cdot \frac{P\{E_2 \mid E_1\}}{P(E_2)}$$

 $P\{E_1\}, P\{E_2\}, \text{ and } P\{\neg E_1 \lor \neg E_2\}$

Independent events E_1 and E_2 or if $E_1 \subset E_2 \rightarrow E_2$ has no influence on the probability for $E_1 \rightarrow \text{Conditional}$

 $P\{E_1 | E_2\}(given E_2 = T) = P\{E_1\}$

If two events are mutually exclusive,

$$P\left\{E_1 \wedge E_2\right\} = 0 = P\left\{E_1 \mid E_2\right\}$$

If E_1, E_2 not disjoint : $P\{E_1 \land E_2\} = P\{E_1 \mid E_2\} \cdot P(E_2)$ $= P\{E_2 \mid E_1\} \cdot P(E_1)$

Fractional probability for $E_2 = T(if E_1 = T) / Total P(E_2)$

Prior probability $P(E_1) = suspicion, guess$ W. Udo Schröder 2023Combin Stoch Vrbl

Bayes' Theorem: Rain or Sun ?

Prob for $E_2 = rain$ when observing umbrellas $P\{E_2 = rain \mid E_1 - umbr.\} = P(E_2 = r) \cdot \frac{P\{E_1 = u \mid E_2 = r\}}{P(E_1 = u)} = 0.25 \cdot \frac{0.8}{0.2} = 1$

Discrete Multivariate Probability Distributions

Bias Test: Randomly draw colored dies (i=1-5) out of bag. Roll each die many times and record face frequencies (j=1,...,6). Normalize to total # rolls. $\rightarrow \dim\{p_{ii}\}$ domain =5x6=30 \rightarrow Data must fulfill independent constraints:

	Color $u_i =$									
	Color_	Face j								
	i	1	2	3	4	5	6	$u_i = \sum_{j=1}^6 p_{ij}$		
0	red							$u_1 = 0.10$		
1	blue				p_{24}			$u_2 = 0.30$		
1. T.	green							$u_3 = 0.20$		
0	white							<i>u</i> ₄ = 0.25		
	black							$u_5 = 0.15$		
	$v_j = \sum_{i=1}^5 p_{ij}$	<i>v</i> ₁ 0.131	v_2 0.148	v ₃ 0.163	v_4 0.162	<i>v</i> ₅ 0.200	v ₆ 0.196	Data		

After Dill & Bromberg

Discrete Multivariate Probabilities

Compare a priori with posteriori probabilities to find bias. Example: blue die with face "4" from overlap (simultaneous) probability domains.

A priori : P(blue, any #) = 1/5; $P(any, 4) = 1/6 \rightarrow P(blue) \land P(4) = 1/30 = 0.033$ *A posteriori* : $P(blue) \land P(4) = u_2 \cdot v_4 = 0.3 \cdot 0.162 = 0.049$

But $0.049/0.033 \approx 1.5 = u_2/0.2$

	- Station	$j \longrightarrow$								
	i 丿	1	2	3	4	5	6	$u_i = \sum_{j=1}^6 p_{ij}$		
0	red	0.016	0.018	0.018	0.017	0.015	0.016	$u_1 = 0.10$		
	blue	0.025	0.035	0.045	0.055	0.065	0.075	$u_2 = 0.30$		
	green	0.030	0.028	0.032	0.030	0.050	0.030	$u_3 = 0.20$		
	white	0.040	0.042	0.038	0.040	0.040	0.050	<i>u</i> ₄ = 0.25		
	black	0.020	0.025	0.030	0.020	0.030	0.025	$u_5 = 0.15$		
	5	v_1	v_2	<i>v</i> ₃	v_4	v_5	v_6			
	$v_j = \sum_{i=1}^{n} p_{ij}$	0.131	0.148	0.163	0.162	0.200	0.196			

Data from Dill & Bromberg

End Probability & Combinatorics

W. Udo Schröder 2023

Combin Stoch Vrbl