Order and Chaos, determinism and unpredictability

Non-linear dynamics in nature and their modeling Examples (climate, planetary motion), mathematical model (logistic map) Stability criteria, stationary states

Complex kinetics in coupled chemical reactions Self-organization in coupled chemical reactions Application: Self-replication in autocatalytic reactions Cellular automata and fractal structures

Thermodynamic states and their transformations Collective and chaotic multi-dimensional systems Energy types equilibration, flow of heat and radiation

Application Vaccine Design

Genetic sequencing Covi-19 virus and mutants, identify specific sub-sequence

Synthetic DNA design for building instructions for Sars-CoV-2 spike protein = one part of virus shell, not a pathogen, but generates antibodies

Insert synthetic DNA as a "template" into bacteria, mass breed bacteria \rightarrow produce large mass of spike DNA by replication, harvest from bacteria

Separate DNA strands → use enzyme RNA polymerase to make mRNA

Insert into lipid nanoparticle, safe transfer into body James Watson and Francis Crick (1951) structure of DNA: Genetic code = encrypted functionality and structure of biologic tissue matter.

DNA Structure

Main DNA components = Bases: adenine (A), cytosine (C), guanine (G), and thymine (T)

Bases can form pairs and link together \rightarrow DNA double helix

	DNA	RNA
Shape	Double helix	Single strand
Sugar	Deoxyribose	Ribose
Base	Thymine	Uracil
Length	Long	Short

DNA template = palindromic (left-right self-complementary)

Use 2 nucleotide trimers to align and pair with hexa-DNA template, bind the two trimers \rightarrow bound hexamer on template \rightarrow Recover original template plus one copy.

 \triangleleft

Autocatalytic self-replication with template: Cycle combines available separate building blocks *A*, *B*' on template, dissociates template from copy, Re-cycles template

Each cycle makes another template copy \rightarrow exponential growth in numbers, inhibits other competing processes.

Ь

Represent replication structure by set of rules: Simples case rule \rightarrow function G, "Parent" = Object $\mathbf{x} = \mathbf{x}_0$ starting point of a series Descendant ("child") $\mathbf{x}_1 = G(\mathbf{x}_0) = \text{copy of } \mathbf{x}_0$, possible transformation (scaling, translation, ...) \rightarrow Self-Similar Structures

 $x_n = G(x_{n-1}) = G[G(x_{n-2})] = G\{G[G(x_{n-3})]\} = G^n(x_0) \rightarrow Map$

9

Fractal Mandelbrot Set

Simple Rules Govern Complexity

 \sim

Precipitate from saturated solution

- .. in processes and structures to which they lead
- self-organizing, orderly behavior,
- co-operative phenomena global fractal structures,
- In the limit: complete disorder/chaos

Examples:

- Behavior of gas and liquids, diffusion, convection
- Crystallization
- Turbulence in fluids
- biological life (stem cells), ageing
- Forest fire propagation
- The flow of electricity in a power grid
- Urban development.
- •

Order and Chaos, determinism and unpredictability

Non-linear dynamics in nature and their modeling Examples (climate, planetary motion), mathematical model (logistic map) Stability criteria, stationary states

Complex kinetics in coupled chemical reactions Self-organization in coupled chemical reactions Application: Self-replication in autocatalytic reactions Cellular automata and fractal structures

Thermodynamic states and their transformations Collective and chaotic multi-dimensional systems Energy types equilibration, flow of heat and radiation

CA Concept

- The configuration (state) space of a system is approximated by an ndimensional lattice of equal cells.
- Each cell has a finite number of discrete properties.
- Time evolution of CA system occurs (can be modeled) in discrete time steps → generations.
- Evolution occurs to (a set of) strict deterministic rules.
- Evolution rules reference exclusively states of neighboring cells, reflect local environment.

Occupied, alive

Not occupied, dead

—	
Dutto	
NULP	
-	

Consolidate:

Any of the patterns could result in the future middle cell to be *alive or dead*

Not oc

Not occupied, dead

Byte

Rearrange byte pattern in ascending order: bytes ordered in binary sequence

Condition of survival of a cell depends on the states of its own past and that of its two neighbors' past \rightarrow depends on the past state of a triplet of 3 cells (=byte).

Cellular Automata

There are 8 possible occupation schemes (0, 1, 2, 3, 4, 5, 6, 7) for a byte. Any one of them, and any logically valid combination, could produce an alive (= 1) cell or a dead (= 0) cell. There are obviously 256 (0, 255) possible constructions of combination rules

There are obviously 256 (0-255) possible constructions of combination rules (represented by the set of all numbers 0,....,255).

Rearrange byte pattern in ascending order: bytes ordered in binary sequence

Condition of survival of a cell depends on the states of its own past and that of its two neighbors' past \rightarrow depends on the past state of a triplet of 3 cells (=byte).

Implies live for the cell in the next time step, if it the cell was **previously unoccupied and** had only one alive neighbor on the left or on one on the right, **but not on both sides**.

Propagation pattern Code $\#_{\text{binary}} = 10010_2 = (2^4 + 2^1) = 18_{10}$ $\rightarrow \overline{q_i} = (p_{i-1} \oplus r_{i-1}) \land (\neg q_{i-1})$

Cellular Automata

CA code $\# = 10100_2 = (2^4 + 2^2) = 20_{10}$

 $CA \ code \ \# = 10100_2 = (2^4 + 2^2) = 20_{10}$

Procedure

- Draw grid
 x (k) vs. time (i)
- Load initial conditions, pattern x_k(i=0)
- Derive pattern
 x_k(i=1) from
 population of
 triplet
 - {**x**_{k-1}, **x**_k, **x**_{k+1},} at (*i=0*)
- 4. Next row *i*.....
 5. For selfreplication, keep history

CA code $\# = 10100_2 = (2^4 + 2^2) = 20_{10}$

Procedure

- Draw grid
 x (k) vs. time (i)
- Load initial conditions, pattern x_k(i=0)
- Derive pattern
 x_k(i=1) from
 population of
 triplet
 - {**x**_{k-1}, **x**_k, **x**_{k+1},} at (*i***=0**)
- 4. Next row *i*.....
 5. For selfreplication, keep history

Cellular Automata

CA code $\# = 10100_2 = (2^4 + 2^2) = 20_{10}$

Procedure

- Draw grid
 x (k) vs. time (i)
- Load initial conditions, pattern x_k(i=0)
- Derive pattern
 x_k(i=1) from
 population of
 triplet
 - {**x**_{k-1}, **x**_k, **x**_{k+1},} at (*i***=0**)
- 4. Next row *i*.....
 5. For selfreplication, keep history

Coding CA#20

Coding CA#30

 $A_{i,j} := 0$ Initial values 1,0 + $A_{0,100} := 1$ i := 1 ... M - 1Rule 30: p Xor (q or r) random $\begin{array}{lll} A_{i,j} \coloneqq & a \leftarrow 0 \\ p \leftarrow A_{i-1,j-1} \\ q \leftarrow A_{i-1,j} \\ r \leftarrow A_{i-1,j+1} \\ a \leftarrow 1 & \text{if } p = 1 \oplus (q = 1 \lor r = 1) \end{array}$ a CA #30, with one more condition. More complex pattern. Repetitive fine structure is observed at the rim of the triangle and upon blowup.

22

Coding CA#90 Specific IC

Stat Theory W. U. Schröder

23

Cellular Automata

Coding CA#90 Specific IC

CA #90, with 3 initial cells populated. Fractal structure is modified but persists.

24

Coding CA#90 Random IC

 $A_{0,j} := 0$ Random initial values 1,0 if rnd(1) > 0.51 j := 1 ... M - 1 $\begin{array}{lll} A_{i,j} \coloneqq & a \leftarrow 0 \\ & p \leftarrow A_{i-1,j-1} \\ & q \leftarrow A_{i-1,j} \\ & r \leftarrow A_{i-1,j+1} \end{array}$ Rule 90: p Xor r fractal structure $a \leftarrow 1$ if $(p = 1) \oplus (r = 1)$ a CA #90, with random population of 50% of initial cells. Specific fractal structure is washed out, additional pattern appears on larger length scale.

Approximates Random chaos

Cellular Automata

Summary

CA research: 4 classes of automata,

- Class 1 reaches a homogeneous state (all cells free) after a few initial steps.
- Class 2 shows a periodic pattern after the first few steps, relatively independent of initial conditions.
- Class 3 develops into a chaotic pattern, independent of initial conditions.
- Class 4 produces a highly complex, nested fractal pattern.

Very specific, simple, localized microscopic interactions of coupled systems can lead to highly organized structure.

Pronounced fractal structure emerges from localized initial conditions (seeds).

Spread-out initial state conditions lead to washed out structures or chaos.

Because of their specific (unusual) geometrical shape (surface/volume), Class-4

CAs have functionality important for live, biomed and general technology.

26