
Agenda: Complex Processes in Nature and Laboratory

Systems and dynamics, qualifiers
Examples (climate, planetary motion), 

Order and Chaos, determinism and stochastic unpredictability
1D dynamics: phase space curves/orbits

Non-linear dynamics in nature and their modeling
mathematical model (climate, logistic map)
Stability criteria, stationary states

Self replicating structures out of simplicity 
Cellular automata and fractal structures,
Self-organization in coupled chemical reactions

Thermodynamic states and their transformations
Collective and chaotic multi-dimensional systems
Energy types equilibration, 
flow of heat and radiation

Reading Assignments
Weeks 1&2

LN II: Complex 
processes

Kondepudi Ch.19 
Additional Material
J.L. Schiff: 
Cellular Automata, 

Ch.1, Ch. 3.1-3.6

McQuarrie & Simon
Math Chapters 

MC B, C, D, 



Tipping Points in Earth Climate ?

Non-linear and coupled effects in Earth 
current climate evolution→ global warming, 
melting of sea ice , ice cap, desertification, 
ocean acidification, sea level rise,……

Historic climate facts:
Earth climate has alternated between 
Ice ages (little and major) and greenhouse
periods.  Transition speed?
Do we have time to adapt or change pace?
Mind the fate of planet Venus (NYT 012921)

Surface Melt of Greenland Ice Sheet

4 days

Earth albedo or surface reflectivity  e = 
important in maintaining radiation balance

Glaciation: increasing ice cover 0 0surface temperature change Te  →  

Warming: decreasing ice cover 0 0surface temperature change Te  →  

Albedo is non-monotonic function of important driving parameters, has extrema!



Earth Albedo Model

Albedo is non-monotonic function of important driving parameters. 

Combine e parameter dependence to model non-linear dependence on history: 
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Laboratory Experiments On Complex (Chaotic) Dynamics

To investigate expected behavior of physical 
system → study mathematical properties of profile 

function and associated maps.

→ Test with laboratory experiments.
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Chua Diode NR : 
nonlinear negative 
resistance = 
amplifier with 
positive feedback.

Chua’s Nonperiodic Oscillator

 

 

Lamp Q 

Laser Cell 

Mirror 

Pulse 

Nonlinear Laser Amplifier 

Initial maximum laser cavity intensity

Once around the track → → cavity
Stimulated emission 

trigger intensity x available inversion

I 1=

0
I 1

( )01 0
0I tI c1 nI e −=   

Logistic 
Map

n =  number of circuits completed

Detector
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Graphing An Iteration (“Cobweb Plot”)

1. Draw horizontal (I) and vertical (f) 
axes of a 2D Cartesian coordinate 
system, with equal divisions. 

2. Plot the map profile function f(I) vs. I .
3. Plot the diagonal line y(I) = I.

4. Start drawing the trajectory In , (n = 0, 
1…..) by marking the initial point In=0

on the horizontal axis.
5. Draw a vertical arrow, from point In, to 

its functional value In+1 = f(In) on the 
profile curve.

6. Draw a horizontal arrow from point 
f(In) to the point f(In)= In on the y = I 
line. This identifies the abscissa 
coordinate In for the next iteration.

7. Go to 5) and repeat 5) and 6) until 
done.  

 

I 

  f(I) 

 y=I 

I0 I1 I2 I3 

y(I) = I 
1

I  

2
I  

3
I  

Sequence I, f(I), f2(I),...,fn(I)...
Plotted in 2D : f(In) vs. In



Graphing An Iteration II

Sequence I, f(I), f2(I),...,fn(I)...
Plotted in 2D

f(In) vs. In

Different In : Laser intensity flickers

Iteration Number n

I n
 =

 f
(I

n
-1

)

Sequence I, f(I), f2(I),...,fn(I)...
Plotted in 1D vs. I 

Intensity In vs. Iteration number n

Intensity increases at first, then 
oscillates slightly. Finally, gets to 
steady-state operation after a few 
initial circuits (periods).



Logistic Map Features

Features of an iteration on a map depend on the 

profile function f, specifically on the amplification 

factor  and the initial conditions, 

InCon for 1D: just the starting point I0.
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Order and Chaos Parameter Dependence

 = 2.5: Fixpoint = attractor.  All trajectories end up 
in this point: Laser operation stable after startup. 
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 = 3.8 Fixpoint = strange attractor. 
Trajectories spiral initially around fixpoint: intensity 
blinks slightly. After a few cycles, oscillations 
between 3 and 4 different brightness levels, highly 
unstable, essentially right after  start. 

Sensitivity to initial conditions → chaotic operation

Slightly different I0
lead to very 

different time 

behavior.

N=500 iterations
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Chaotic Map Trajectories

Same example as above, plot showing 
only the iterative intensities In on the 
curve  representing the map profile 
function f(I).

A large part of the brightness spectrum is 
covered by the trajectory already after 
500 iteration. No apparent intensity 
pattern. 
Intensity flashes between bright and dim.
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Same example as above, plot shows 
iterative intensities In vs n. Some, but not 
exact similarities, intermittency domains, 
strongly dependent on initial condition I0.
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Sensitivity to Initial Conditions

Illustration of sensitivity to initial conditions for 

 = 3.85,  fixpoint at I = 0.74, strange attractor

IC:  I0 = 0.17, N = 100 iterations

Blinking alternatively with 3 different intensities
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Illustration of sensitivity to initial conditions for 

 = 3.85,  fixpoint at I = 0.74, strange attractor

IC:  I0 = 0.175, N = 100 iterations

Blinking alternatively with a continuum of intensities filling 
most of the accessible intensity range
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Periodic Flashes

Metastable/intermittent processes, strange but predictable trajectories: search 
for “periodic points.” Points of period n = stable (attractor) fixpoints of fn(x).
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Fixpoint at If = 0.653  (black dot)

= “strange” attractor: 

Trajectory cycles around If in 3 periods.

Finding members of strange cycle: look 

for tangential touching of curve 

f3( ,I) at y(I)=I.

Intensity I
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Periodic Flashes

Metastable/intermittent processes, strange but predictable trajectories: search 
for “periodic points.” Points of period n = stable (attractor) fixpoints of fn(x).
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Fixpoint at If = 0.653  (black dot)

= “strange” attractor: 

Trajectory cycles around If in 3 periods.

Pattern f( ,I) exhibiting periodic triplet 

blinking patterns : medium, high, low 

intensity.

Deterministic

Intensity I
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 y
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In
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Linear and Non-Linear Dynamical Regimes
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Trajectory deterministic for precise initial condition

non trivial repellor fixpoint determinist







→
  − → →

  −

  − "

,

3.6 3.8: 1

(

,

3.8 4.0: 1 ,

)

d

i

bi stable flickeri

i

c chaos

with alternating intensities

several n

non tr vial repe

ng

frequency doublings bifurcations

intermittent flllor fixpoint

non tri avial repell

r

or

c

f

i ke

ch otii n cxpoi t





−

 

−

−

−

  ynamics

 = 3.55  = 3.61

In
te

n
si

ty
 I n

Iteration Number n

Left: Frequency 
doubling

Right: Two frequency 
doublings with 
intermittency.

Complex Sys Dynamics  W. U. Schröder, 
2023



Logistic Map Features

Profile function f, amplification factor 
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Logistic Map Features

Profile function f, amplification factor 
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Check behavior by varying initial conditions, 

Compare  trajectories with (I0 =If ± e) 

→ Different sensitivity to initial condition.
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Stability of Complex Systems

What are asymptotic states reached in 
limit t, n → ∞ ? 
Can they be reached from any initial conditions?

Specifically: deterministic or chaotic behavior?

→ Need stability criterion, 
one-dimensional classical mechanics:

motion driven by a potential V(x)

Force equilibrium → V(x)=extremum: 

Stat Theory W. U. Schröder
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Illustration of potential 
equilibrium points and 
trends of neighboring 
trajectories

Corresponding effects of development of 
neighboring trajectories:

Converge towards stable equilibrium
Diverge away from unstable equilibrium 

V
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Stability of Complex Systems

Stat Theory W. U. Schröder
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Illustration of potential 
equilibrium points and 
trends of neighboring 
trajectories

Integrate 1D equation of motion EoM along x
numerically → 1D map xn+1 = f(xn)

Example: Point particles, mass m, force F
(Can you write down EoM xn = x(tn) ?)

2 similar initial conditions given x and 
(x+e ) small e > 0.

Step n: trajectories at  fn(x) and fn(x+e)

Convergence/divergence ➔ Distance criterion d
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How far apart are initially close trajectories after step n?

Legitimate definition of l , illustrates behavior n→∞



Lyapunov Stability Criterion

Stat Theory W. U. Schröder
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Illustration of potential 
equilibrium points and 
trends of neighboring 
trajectories
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divergence l  0 Convergence l  0 

Large positive exponents indicate extreme 
sensitivity to initial conditions→ chaotic dynamics
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Lyapunov Exponent

Chain Rule for differentiation:

Stat Theory W. U. Schröder
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Asymptotic iterates and Lyapunov 

exponent for the logistic map:

Gain factors  determine dynamics

 ≥ 1: at least bifurcation

 ≥ 2: at least 2 bifurcations

 ≥ ∞: l generally >0, → Chaotic 

system behavior, small special 

domains for (relatively) orderly 

behavior.

Stat Theory W. U. Schröder
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Outlook and Conclusions (for our environment)

❑ Non-linear dynamics of complex systems can lead to orderly or chaotic   
behavior, depending on non-linearity → amplification  for log. map.  
strength of positive feed back loops.

❑ Chaotic dynamics include sudden wild oscillations in system properties 
at “Tipping Points,”  

❑ Given an observed non-linear behavior for a specific system (example:  
Earth albedo), it is possible to estimate a Logistic-Map model 
amplification parameter  . 

❑ Extensions of simple 1D Logistic-Map model include multiple dimensions 

{x,y}  provide understanding of population dynamics (predator-prey)

❑ Earth albedo can change rapidly, leading to tipping points in climate.
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