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Thermodynamics: Phenomenology & Applications
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• Work and other forms of energy

• Fundamental Laws of Thermodynamics

• Ideal-gas laws and simple processes

Technological applications, cyclic engines

• Real gases equation of state

Technological applications

• Phase equilibria, solutions

• Transport phenomena

Reading Assignments

Weeks 12&13

LN V-VI:

Kondepudi Ch. 3.5-3.7, 

6 & 7 

Additional Material

McQuarrie & Simon

Ch. 5 & 6



▪ Have considered the response of stochastic systems to external agitation. For 

example, multi-particle system (e.g., a gas) exposed to radiation, mechanical, 

or other work randomize initial disturbance by multiple interactions between 

system constituents (e.g., random collisions between gas particles).

▪ This dissipation process is directed towards increasing statistical entropy S (h-

theorem). It takes some time to complete S→Smax.

▪ After that, all particles in the system move randomly and share the total 

energy equally on average. → Fluctuations between equivalent microstates.

▪ This state is called “Thermal Equilibrium”  (no memory of history) 

Extensive State Functions:  N,V, internal energy U, entropy S, 

enthalpy H, free energies A, G. Intensive State Functions p, T.

▪ Predict probability distributions for all macroscopic observables: time-

dependent means and variances.

Evolution and Asymptotic State of Stochastic Systems
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Gas Laws: Ideal-Gas Equation of State EoS

Robert Boyle, Guillaume Amontons, Gay-Lussac, Dalton,.. 

Response of dilute gases of specified amounts (#moles = n, Avogadro)
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 ≈ 3.66·10-3/0C ≈ 1/2730C → absolute temperature T

Robert Boyle: gas pressure p increases with external 

force F = p·A, scales with number of particles (N) or (n) 

of gas moles

  =1 orP(V ) V P V const(n,T )Boyle' s Law

Joseph Louis 

Gay-Lussac

1778-1850

Robert Boyle

1627-1691

Guillaume Amontons

1663-1705
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 =   =  BP V n R T N k T

=  BP k T

EoS of Ideal Gases

Equivalent
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Amontons' Paper and Setup



Mechanical Equivalent of Heat
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"An Experimental 

Enquiry Concerning the 

Source of the Heat which 

is Excited by Friction", 

(1798), Philosophical 

Transactions of the 

Royal Society p. 102

≈ specific heat of H2O: 

CV() ≈ (4.17- 4.22) J/(g·°C)

James Prescott Joule

1818-1889

Wikipedia

Joule's experiment

Calorimeter

Weight

Ruler
Thermo

meter

Paddle 

wheel

Crank



Ideal-Gas Equation of State EoS

Complete description of macroscopic 

equilibrium state of any dilute gas: 

Ideal gases have only one phase (g)

State Functions (variables) 

Pressure P, volume V, temperature T,

Energy U = <E>, Entropy S
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Gas Constant  R = 8.31451 J/(K·mole)

Boltzmann Constant  kB = 1.38.10-23 J/K

 =   =  BP V n R T N k T

Idealization: At T=0 :  P = 0, V = 0. 

Idealization not viable at T=0  high 

high matter density→ particles interact

Force F = P·A→ P·V = energy content

Entropy S = n ·[R·LnV + CV · LnT]
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0. LTD: Systems in Thermal Contact Equilibrate

WHY? How likely is any E1/E2, how does it evolve in time?

→ Heuristic argument ≈ postulate, specific for q exchange 1→2:

Observation: Systems in contact exchange energies until T1=T2

21

E2,T2E1,T1

Disequilibrium: Systems, 1 and 2, 
individual particle numbers and energies,

N1+N2 = N,  E1+E2 = E =const.

# of states: W1(E1) and W2(E2), initial (E1,E2)

Isolated combined system CS = 1+2 : 
E1+E2 = E=const, but E1/E2 can vary through

heat (q) exchange  1→2 (no particles). 

T1≠T2

Maximize   P(E1,E2)  WCS(E1,E2) = W1(E1) · W2(E2) = W1(E1) · W2(E - E1)
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Maximizing Opportunities (# of accessible states)
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We already know: If configurations are equally likely → P maximizes entropy (h)
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Entropy and Energy at Equilibrium
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Simplest form compatible: Entropy (“intrinsic”) S extensive,  with S0=0

integration constantBoltzmann Constant

BE N P V N k T = 

Const(E) dim=1/energy: Independent of material, size, shape, amount. 
→ Depends on energy supplied to one of the systems. 

But is not extensive!
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Deduced from Observation: Entropy at Equilibrium
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Thermodynamics: Phenomenology & Applications
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• Work and other forms of energy

• Fundamental Laws of Thermodynamics

• Ideal-gas laws and simple processes

Technological applications, cyclic engines

Carnot process

• Real gases equation of state

Technological applications

• Phase equilibria, solutions

• Transport phenomena

Reading Assignments

Weeks 12&13
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McQuarrie & Simon

Ch. 5 & 6
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The Ideal-Gas Equation of State

{p, V, T}

A

Ideal Gas Constant R

R = 0.0821 liter·atm/mol·K

R = 8.3145 J/mol·K

R = 8.2057 m3·atm/mol·K

R = 62.3637 L·Torr/mol·K or    

L·mmHg/mol·

Boltzmann Constant kB

kB= 1.381·10-23 J/K
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p(V,T)= n R T/V

p·V = n·R·T; n=# moles; equivalent: p·V = N·kB·T (N=# particles)

T→ U Only gas phase!( )3 2 BInternal energy U N E N k T = 

=  + =  − 
pV

dU T dS w T dS p dV
 

 =  
 T

U
T dS

V

 
+ +  

 V

U
dV dT p dV

T

Ideal gas
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Transitions Between States

A
B

State functions p, V, T, S,… describe the system states but not the processes connecting 
them. 

A→ B

along Path 1

A→ B

along Path 2
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A, B: Two states of the 
same gas.

Processes                 

and  

Differ by different types 
and relative amounts of 
energy transfer via 
absorption of heat and 
performance of work.

⎯⎯⎯→1A B

⎯⎯⎯→2A B
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Of interest for cyclic 
machines.
Slow, equilibrium 
processes A → B,

subject to equilibrium 
boundary conditions of:

1. Dp = 0      (isobaric)

2. DV = 0    (isochoric)

3. DT = 0 (isothermal)

4. q = 0    (adiabatic)

follow well-defined, 
constrained routes in the 
{p, V, T} hyper-plane of 
states. Can, in principle, 
be inverted →reversible 

processes.

Reversible Processes

T

q=0

Reversibility is not guaranteed for all processes involving an ideal gas. Need to 
maintain equilibrium throughout process.
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w = - area under curve p(V)
Total work (V1 →V2):

Reversible Isothermal Expansion/Compression
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Heat transfer

Total heat transfer (1 →2) 

Reversible Isobaric Compression
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Inverse process: heating at constant p, e.g.,  p=patm , leads to 
expansion, V2 → V1>V2  → drives piston out of its cylinder.

EOS

Slow, reversible compression under retention of equilibrium, S=Smax (T) 
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Reversible Decompression
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0Vq C T= D 

Inverse process: heating at constant V, leads to increased temperature 
and pressure.

Slow, reversible expansion under retention of equilibrium, S=Smax (T) 
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1) Isothermal expansion at T1=const. 

2) Isochoric decompression at V2=const., 

3) Isothermal compression at T2 =const. 

4) Isochoric compression V1=const., 

Energy balance:

1) gas does work         w1 = - q1; DU = 0

2) gas emits heat         q < 0; DU < 0

3) gas receives work   w2 = - q2; DU = 0

4) gas absorbs heat       q > 0; DU > 0

Total energy change:   DU = 0  (cyclic)

Total work done: w = w1+ w2 < 0

Total heat absorbed:   q = q1+ q2=-w > 0

Expansion-Compression Cycles

In one cycle the gas absorbs net heat 
energy and does net work, 

w = w1 + w2 = -q = CV∙[T2-T1]

Not all absorbed heat is converted, 
some has to be dumped as waste heat.
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V1 V2

Contact 
Cold Sink

1

2

3

4
T1

T2

Observation: IG systems absorbing external (random) heat can produce mechanical work 

on surroundings (=engine). Continuous operation requires cyclic process (in p-V-T space).

Contact 
Heat Bath
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Make an arbitrary cyclic process out of 

elementary isothermal and isochoric 

processes →

Heat energy q1 is absorbed at a high 

temperature(s) T1, and partially 

dumped, |q2| < |q1|, at a lower 

temperature(s) T2.

The difference (q1 + q2)= q1-|q2| is 

converted into useful work w < 0 done 

on surroundings by the gas.

Thermal Engines: Principle of Operation 

T

V

Net work 
done by gas

T2

T1

Random heat energy is converted into orderly collective energy 
(work, pushing a piston, turning a wheel) !!!!!!! → Practical use 
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q1

q2

Horizontal paths traveled in both 
directions do not contribute net work 
→ Area within closed p-V paths = 
total work done in cyclic process.
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System interacts with environment, is not isolated 
(DT=0).

In process A → B, carried out so that system is 
always at equilibrium (e.g, pext dV= pgasdV+q), 
system produces maximum work. 
(balance by including the –sign, sign convention!):

wrev < wirrev → |wrev |> |wirrev|

Where did the difference Dw go ? Nowhere!
Also less/no heat absorbed on irreversible path.

1. Law TD, and since U is a state function,

If DUA→B = DUA’→B → (q+w)rev = (q+w)irrev

→ wrev < wirrev → qrev > qirrev

Wrev is largest amount deliverable (negative) reversibly →

qrev is largest amount of heat system can absorb reversibly 
and convert into work. 

Work/Heat in Reversible vs. Irreversible Processes

Irreversible, spontaneous processes: 
Less efficient conversion of absorbed heat into useful work.
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X

Opening valve:Expansion →B, B’

V

pgas

A

B

irrev
expansion

B’

A’

pext

pext

pext

irrev

rev

B

A

A’ V

V
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Similar to previous examples, 
but adiabatic expansion T1→T2

adiabatic compression T2→ T1

Adiabatic pdV works cancel because 
V4/V1= V3/V2 → V4/V3= V1/V2

Energy balance: w = q1 + q2 > 0
on isothermal portions: 

Carnot Cycles

1

1

2
1 2

1 2

1 1

2
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Reversible adiabatic exp./compr.: DS = q/T= 0 
since q= 0.
Irreversible adiabatic exp./compr.: DS > 0. 

V
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Efficiency of Carnot Engines

Theoretical Carnot efficiency

Tcold

Thot

-w = qh+qc=DS·(Th- Tc) 

qh= DS·Th

qc= -DS·Tc
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Typical Carnot cycle efficiency achieved: C≈ (30-40)%

In practice, Th of heat bath depends on fuel heating value (max temperature Tad). 
Transfer from fuel to heat reservoir: ( ) ( )F ad h ad cT T T T = − −

1 c ad h
C F

h ad c

T T T

T T T
  

   −
=  = −    

−   
→ Effective Carnot efficiency:

|DS| = const
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Entropy Flow in Carnot Engines

Entropy DS from the hot reservoir 
enters the engine with a heat energy 
of  DS·Th, 

produces work and leaves it again 
with a heat energy of DS·Tc, 
which is dumped into the cold sink.

Tc

Th

-w = qh+qc=
= DS·(Th -Tc) 

qh= DS·Th

qc= -DS·Tc

Analog: Stream of water DM from a reservoir carries energy DM∙g∙h1 , enters a hydro-
turbine, produces work, and leaves with an energy  DM∙g∙h2 , which is dumped into the 
river. 

Hydrodynamic Power Plant

DM∙g∙h1

DM∙g∙h2

V

p

(p2, V2)

(p3, V3)

(p4, V4) work

(p1, V1)

Th

Tc

q=0

q=0
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Turbine

Inlet

Outlet

Reservoir

.
M S

Mass flow j dM dt Entropy flow j dS dt 
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Steady-Flow Processes

1. Law of Thermodynamics 
(Conservation of total energy in isolated system):

21

2
= + + potE U M V

M= mass, = velocity, Vpot =potential energy (often ≈0)

Mass density  = m (kg/m3), homogeneous
Internal energy density u (J/m3)
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Spontaneous Reactions Require Free Energy

G 0G for reversibleD =
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Efficiency of Carnot Engines

Theoretical Carnot efficiency

Tcold

Thot

-w = qh+qc=DS·(Th- Tc) 

qh= DS·Th

qc= -DS·Tc
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In practice, Th of heat bath depends on fuel heating value (max temperature Tad). 
Transfer from fuel to heat reservoir: ( ) ( )F ad h ad cT T T T = − −

1 c ad h
C F

h ad c

T T T

T T T
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→ Effective Carnot efficiency:
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