Agenda: Complex Processes in Nature and Laboratory

Systems and dynamics, qualifiers Examples (climate, planetary motion),

Order and Chaos, determinism and stochastic unpredictability

Non-linear dynamics in nature and their modeling mathematical model (logistic map) Stability criteria, stationary states

Self replicating structures out of simplicity Cellular automata and fractal structures, Self-organization in coupled chemical reactions

Thermodynamic states and their transformations Collective and chaotic multi-dimensional systems Energy types equilibration, flow of heat and radiation Reading Assignments Weeks 1&2 LN II: Complex processes

Kondepudi Ch.19 Additional Material J.L. Schiff: Cellular Automata, Ch.1, Ch. 3.1-3.6

McQuarrie & Simon Math Chapters MC B, C, D,

Complexity: Definitions & Qualifying Tests

- System: Material or hypothetical entity with distinct components, distinct states, state functions, stability of component configurations, stationary states, ordered or random equilibrium configuration
- Simple Systems: few components and/or few degrees of freedom absence of correlations between d.o.f. (mean field)
- System Dynamics: Time evolution of system and components constants of motion, synchronization of component behavior, periodic trajectories, self-organization, replication, cooperative pattern formation, dissipation, dissociation, asymptotic approach to equilibrium random configuration
- Simple dynamics: Deterministic evolution from initial to final state, weak or linear component interactions, mean field, linear effect of initial conditions

Complex System with Complex Dynamics: Space

Near-infrared-light view of an active region in space by NASA's James Webb Space Telescope.

 \rightarrow Visible are gas and dust clouds expanding into largely empty space.

IR light allows us to peer through the dusty pillars into a star-forming region. Thick, dusty brown pillars are not opaque to IR. Red points reflect massive emission of heat energy and indicate formation of stars.

 \rightarrow Visible are gas and dust clouds contract and assemble into small, dense, hot stars.

 → Opposite trends (dynamics) are observed to occur simultaneously.
Non-deterministic dynamics, disequilibrium.
Recent time scales: 10Ga

Complex System with Complex Dynamics: Earth Climate

Mean surface temperature vs time (log scale)

Different methods to determine temperatures (etc.) of paleoclimate, ice cores (\approx 3Ma), isotopic ratios, ocean sediments (\approx 100Ma) \rightarrow direct satellite T measurements (±0.1°C).

-(500-50)Ma: Large oscillations $\Delta T \sim 20^{\circ}C \rightarrow -50Ma$ global cooling \rightarrow intermittent ice ages and warming periods $\rightarrow -12ka$ stable temperatures $\rightarrow -100a$ exponential rise $\rightarrow ?$ Recent time scales: 10ka

Chaotic dynamics,

Cited by S.E. Koonin, Glen Fergus: data sources are cited below, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31736468 https://en.wikipedia.org/wiki/Paleoclimatology#/media/File:All_palaeotemps.svg/

Complex System with Synchronized Dynamics: Electrical Grid

US-NE Electrical grid:

Network of ~10⁸ coupled electrical oscillators @ common frequency & phase

frequency (60 ± 0.1) Hz phase $(0^0 \pm 10^0)$

Stability controlled by operators & feedback electronics

Collective modes: Chaotic, cascading network failure (soliton?) as response on local disturbance (8/14/2003)

Similar: The Internet, neural networks, social networks (family, sport club, political party...)

Complex System Dynamics: Vibrational Coupling

IVR: Intra-molecular Vibrational Redistribution

Spectroscopy with electronically excited ring molecules: Observe absorption or emission.

Series of excited vibrational pDFB states decays with sharp lines (undamped oscillators)

Replace one F by methyl group = rotor with internal structure

- →Coupling with methyl group provides dissipation pathway damped oscillator
- →profoundly influences IVR in pfluorotoluene (pFT)

The much lower energy onset of the broad versus sharp dispersed fluorescence in pFT versus pDFB is attributed to 100-fold enhancement of IVR rates by as much as.

Studies by Parmenter and Stone.

ntro Order&Chaos

Simple Systems with Complex Dynamics: Coupled Oscillators

Mechanical oscillator (pendulum) with low friction coupled to exocentric rotor:

Two-part elliptic loop mounted to pendulum hoop.

Symmetric dumbbell rotor balanced mounted in lower loop

 \rightarrow rotor center of gravity receives periodic kicks

 \rightarrow Forced rotor dynamics, non-deterministic

Video:

- a) Pendulum in equilibrium position, random rotor position
- b) Demonstration: 2 degrees of motion freedom
- c) Initial condition: Pendulum positioned out of equilibrium
 - Demonstration of non-deterministic rotation

Pendulum dynamics

$$M \cdot L^2 \cdot \frac{d^2\theta}{dt^2} = -M \cdot g \cdot L \cdot \sin\theta$$

Linear approx : $\frac{d^2\theta}{dt^2} \approx -M \cdot \frac{g}{L} \cdot \theta$ d)

Simple Systems with Complex Dynamics: Coupled Oscillators

Pendulum dynamics $M \cdot L^2 \cdot \frac{d^2\theta}{dt^2} = -M \cdot g \cdot L \cdot \sin \theta$ Linear approx : $\frac{d^2\theta}{dt^2} \approx -M \cdot \frac{g}{L} \cdot \theta$

Mechanical oscillator (pendulum) with low friction coupled to exocentric rotor:

Two-part elliptic loop mounted to pendulum hoop.

Symmetric dumbbell rotor balanced mounted in lower loop

 \rightarrow rotor center of gravity receives periodic kicks

 \rightarrow Forced rotor dynamics, non-deterministic

Video:

d)

- a) Pendulum in equilibrium position, random rotor position
- b) Demonstration: 2 degrees of motion freedom
- c) Initial condition: Pendulum positioned out of equilibrium
 - Demonstration of non-deterministic rotation

Order vs. Chaos: A Perfectly Ordered Universe ?

Era of Enlightenment (18th Century, Western Europe)

Newtonian Mechanics (3 Laws)

- 1. Inertial motion Force $\vec{F} = 0 \rightarrow dv/dt = 0$
- 2. Force- acceleration Force $\vec{F} \neq 0 \rightarrow d\vec{v}/dt = \vec{F}/m$
- 3. Action-reaction
- Closed system $\{m_i\}$: $\sum_i \vec{F_i} = 0$

Accurate predictability of motion

- 1. All inertias m_i
- 2. All forces \vec{F}_i
- 3. Precise initial conditions \vec{r}_i, \vec{v}_i

Linear force laws: Insensitivity to initial conditions

Small changes in initial conditions

ightarrow small changes in final positions and momenta