ROCHESTER

Due WS+1d

Physical Chemistry II

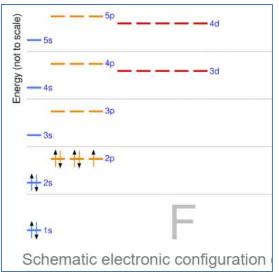
Exercises 9

1. General Concepts

- a) Explain the effect on the quantum wave function of boundary conditions at the classically forbidden regions in space and the nature of the solutions.
- b) Discuss the equivalence and difference between the quantum wave function and the thermodynamic partition function. Illustrate the methods to generate observables from these functions (qu. traveling waves in a box).
- c) How do independent degrees of freedom of free gas particles affect the heat capacity of a gas. What does a higher heat capacity imply?
- d) Molecules have internal structure associated with a quantized energy spectrum. How does the heat capacity function $C_V(T)$ reflect that quantized spectrum?

2. Thermochemistry: Additivity of Chemical Reactions (Hess' Law)

The provided tables list relevant thermodynamic energies of formation, ΔH_f^0 , or of reaction, ΔH_{rxn}^0 , for several reactions.


- a) Write down the energy balance ΔH^0 for the reaction $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$
- b) Write down the energy balance ΔH^0 for the reaction

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$

c) Calculate the heat evolved in the reaction $C(s) + O_2(g) \rightarrow CO_2(g)$ and justify your method.

ROCHESTER

3. <u>Electronic Excitations</u>

Atomic fluorine has the electronic configuration $1s^22s^22p^5$ in its ground state, $1s^22s^12p^6$ in its first excited state at 404cm^{-1} , and $1s^22s^22p^43s^1$ in its second excited state at $102,407\text{cm}^{-1}$. ($1\text{eV}=8,065\text{cm}^{-1}$, spins of paired electrons couple to $S_1 + S_2 = 0$)

a) Write down the electronic degeneracy factors g_s for the fluor electronic ground, first, and second excited states.

b) Write down the first 3 terms of the canonical PF.

c) Estimate the populations of the elector fluoring at T_{-200K}

tronic ground and first excited states for fluorine at T=300K

d) Estimate the populations of the electronic ground and first excited states for fluorine at *T=2000K*.

4. Maxwell-Boltzmann Energy and Speed Distributions

The shape of the energy distribution of free gas particles in thermal equilibrium has been given in class.

- a) Determine the proper normalization of the MB energy distribution.
- b) Calculate the mean kinetic energy *E* of the particles.
- c) Calculate the most probable kinetic energy of the particles.
- d) Calculate the mean speed \boldsymbol{v} of the particles.

5. Population of Molecular Rotational Energy Levels

Consider iodine vapor (I_2) at room temperature. The I_2 molecule has vibrational and rotational degrees of freedom. Relevant data for I_2 are listed in a table shown in class.

- a) Predict the mean and the most probable rotational angular momentum *J* to be observed for the molecule.
- b) Predict the probability for the first excited vibrational state of I_2 .

ROCHESTER

6. Surface Adsorption (AC)

Consider a canonical ensemble of *N* ideal gas particles (mass *m*) in a two-dimensional layer on the surface area F of a solid at room temperature. Assume that particle motion in the surface coordinates x and y is free and uncorrelated.

- a) Calculate the partition function Q_N as a function of surface coverage N/F.
- b) Calculate the energy per particle E/N.
- c) Calculate the Helmholtz surface tension $\sigma = -dA/dF$ of the adsorbed gas layer.

Species Nam	e Formula	Δ _f H°(0 K)	Δ _f H°(298.15 K)	Uncertainty	Units	Relative Molecular Mass	ATCT ID
Carbon monoxide	CO (g)	-113.802	-110.522	± 0.026	kJ/mol	28.01010 ± 0.00085	630-08- 0*0
Contribution (%)	Reaction			Measured Quantity			
63.5	C (graphite) + CO2 (g) \rightarrow 2 CO (g)			$\Delta_{\rm r} {\rm G}^{\circ}(1165~{\rm K})$ = -33.545 ± 0.058 kJ/mol			
4.3	C (graphite) + O2 (g) \rightarrow CO2 (g)			Δ _r H°(298.15 K) = -393.464 ± 0.024 kJ/mol			
3.6	$CO2 (g) \rightarrow CO (g) + O+ (g)$			Δ _r H°(0 K) = 19.0701 ± 0.0010 (×1.114) eV			
3.1	$CO (g) + 1/2 O2 (g) \rightarrow CO2 (g)$			Δ _r H°(303.15 K) = -282.974 ± 0.116 kJ/mol			
2.3	C (graphite) + CO2 (g) \rightarrow 2 CO (g)			$\Delta_{\rm r} {\rm G}^{\circ}(1236.8~{\rm K})$ = -46.195 ± 0.3 kJ/mol			
1.9	$\mathrm{CO}~(\mathrm{g}) + 1/2~\mathrm{O2}~(\mathrm{g}) \rightarrow \mathrm{CO2}~(\mathrm{g})$			Δ _r H°(293.15 K) = -283.036 ± 0.146 kJ/mol			
1.8	$\mathrm{CO}~(\mathrm{g}) + 1/2~\mathrm{O2}~(\mathrm{g}) \rightarrow \mathrm{CO2}~(\mathrm{g})$			Δ _r G°(1173 K) = -180.655 ± 0.150 kJ/mol			
1.7	C (graphite) + O2 (g) \rightarrow CO2 (g)			Δ _r H°(298.15 K) = -393.468 ± 0.038 kJ/mol			
1.7	C (graphite) + O2 (g) \rightarrow CO2 (g)			Δ _r H°(298.15 K) = -393.462 ± 0.038 kJ/mol			
1.2	$CO2 (g) \rightarrow [CO]+ (g) + O (g)$			Δ _r H°(0 K) = 19.4687 ± 0.0010 (×1.915) eV			
1.1	C (graphite) + O2 (g) \rightarrow CO2 (g)			$\Delta_{\rm r}$ H°(298.15 K) = -94.051 ± 0.011 kcal/mol			
0.8	$CO (g) \rightarrow C+ (g) + O (g)$			Δ _r H°(0 K) = 22.3713 ± 0.0015 eV			
0.8	C (graphite) + O2 (g) \rightarrow CO2 (g)			Δ _r H°(298.15 K) = -393.462 ± 0.056 kJ/mol			
0.6	C (graphite) + O2 (g) \rightarrow CO2 (g)			Δ _r H°(298.15 K) = -393.498 ± 0.062 kJ/mol			
0.6	C (graphite) + O2 (g) \rightarrow CO2 (g)			Δ _r H°(303.15 K) = -393.447 ± 0.064 kJ/mol			
0.5	$\label{eq:constraint} \begin{array}{ c c } CO (g) + H2O (g) \rightarrow CO2 (g) + H2 (g) \end{array}$			$\Delta_{\rm r} {\rm G}^{\circ}(893 {\rm K}) = -6.369 \pm 0.283 {\rm kJ/mol}$			