Due: Workshop+1d

Physical Chemistry II

Exercises Set 6

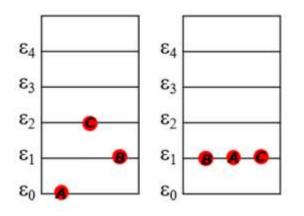
1. <u>Conceptual Questions</u>

- a) Name the main thermodynamic system classes and the prime Laws of Thermodynamics by which they are governed.
- b) How does the time evolution of a system's microstates and a given macrostate differ?
- c) What qualifies as a thermodynamic ensemble?
- d) What does an application of the information-theoretical concept of statistical entropy on a thermodynamic system reveal about the system's actual state?
- e) How is the total differential df of a function f(x,y) related to its Taylor expansion? How is it influenced by a constraint g(x,y)=0

2. Poisson Probability Distribution

On average, 270 people in the U.S. are struck per year, about 10 percent of that number die from the event.

- a) Estimate the odds to be struck by lightning in the U.S. during one's lifetime.
- b) Does the accident rate with lightning strikes likely follow a Poisson law?
- c) Is the recent observation of 293 lightning accidents in the U.S. consistent with expectations or an indication of a new, extreme weather feature?


3. Distributions and Partitions

999	Lo La China I						
001	1	10					
0		0					
	î	()					
1		\square					
	1						
	1						
1	1	1					
		1					
1							

a) A triplet $(n_p = 3)$ of identical particles ("Bosons") is to be distributed among $m_b = 3$ different containers. Each container can hold any number of such particles. The figure shows 4 of the possible partitions of the triplet. Complete the set.

b) Express the number of all partitions of the particle triplet in terms of n_p and m_b . Consider factorials of combinations of these numbers.

c) Perform a similar calculation for Fermion triplets, where one container can hold only up to two particles.

4. Statistics of Microcanonical Microstates

Consider a large (microcanonical) ensemble of instances for a closed system consisting of N = 3 identical particles, A, B, C. The particle energy level scheme is equidistant, with a spacing of e. The ground state is at $\varepsilon_0 = 0$. The total energy

$$E = \sum_{i=0}^{4} \varepsilon_i \cdot n_i = \sum_{i=0}^{4} i \cdot \varepsilon \cdot n_i$$

of the system is fixed at E = 3e, where n_i is the number of particles in energy level *i*.

The figure illustrates 2 arrangements of the particle triplet over the energy levels compatible with E = 3e. It shows just two of the various microstates available for the ensemble to populate.

a) Write down the relevant partitions $\Pi_k = \{n_0, n_1, n_2, n_3\}_k$ of *N* and the numbers Ω_k of associated microstates.

b) Calculate the statistical entropy $S = -\sum_{i=0}^{4} p_i Ln(p_i)$ for each partition, where

the occupation is given by $p_i = n_i/N$.

c) What is the probability of observing the most likely configuration for this ensemble?

d)	Make a	sketch	for the	e set	of	most	likely	configurations	identified	in c).
------------	--------	--------	---------	-------	----	------	--------	----------------	------------	--------

(Suggestion: make a table for the relevant partitions Π_k)

ta-		n ₀	n 1	n ₂	n 3	Ω_k	S
rti-	Π_1						

5. System Properties from a Partition Function (AC)

Consider the partition function Q(N,V,T) for a canonical ensemble of statistical systems embedded in a heat bath at constant temperature *T*. Derive expressions for the first and second moments, $\langle E \rangle$ and σ_E^2 , of the system energy distribution *P*(*E*).