ROCHESTER

Due: Workshop-3d

Physical Chemistry II

Exercises Set 1

1. <u>Random Numbers</u>

Use the MS-Excel utility with its random-number generator and data analysis functions

RAND, AVERAGE, STDEV, FREQUENCY for the following tasks:

- a) Populate 2 columns of a blank XLS worksheet with sets "Datax" and "Datay," each with 300 random integer numbers between 5 and 20. Generate a scatter plot for each set.
- **b**) Calculate mean, variance, and standard deviation for the "Datax" and "Datay" arrays.
- c) Plot the two-dimensional (2D) scatter plot of "Datay" vs. "Datax."
- **d**) Generate a trend line (mouse right click) for the 2D data. Discuss the presence or absence of x-y correlations in the 2D data.

2. <u>Central Limit Theorem</u>

Test experimentally the validity of the Central Limit Theorem. This theorem states that the sums $S(N) = \sum_{i=1}^{N} x_i$ of large numbers of uniformly distributed random numbers $\{x_i, i = 1 - N\}$ approach a Gaussian "Normal" distribution for large *N*.

- a) Use MS-Excel to generate several (5) instances of the mean expectation value $E_N(x) = \frac{1}{N} \sum_{i=1}^{N} x_i$ of random-number sets $\{0 \le x_i \le 1\}$ for N=10.
- **b**) Generate and record additional data sets $\{E_N^{(n)}(x), n = 1, ..., 5\}$ for N = 50, 100, 200.
- c) Compare the average values $\langle E_N^{(n)}(x) \rangle_n$ and the spreads in the sets $\{E_N^{(n)}(x)\}$ for N = 10, 50, 100, 200. Consider the ratio of variance to mean value.

3. <u>Functions of Statistical Variables</u>

Assume a set of real random numbers $\{x\}$ with a finite average $\langle x \rangle$ and finite variance $\sigma^2 = \langle x^2 \rangle - \langle x \rangle^2$. Are the functional values $\{y\} = \{f(x), x \in \{x\}\}$ also statistically distributed with $f(\langle x \rangle) = \langle f(x) \rangle$? Do you know why, or why not? Consider the following functions:

- a) $f(x) = 3 + 2 \cdot x^2$
- b) $f(x) = 2 3 \cdot x$
- c) $f(x) = 3 + 2 \cdot \exp\{-x^2\}$

4. Probability Generators (AC*)

Consider the Laplace transformation $\Lambda(s) := \int_0^\infty e^{s \cdot x} P(x) dx$ of a properly normalized probability distribution, with $\int_0^\infty P(x) dx = 1$.

a) Devise a differential operation on $\Lambda(s)$ producing the mean value (first moment)

$$\langle x \rangle = \int_0^\infty x \cdot P(x) dx$$

- b) Expand the method to obtain higher moments $\langle x^n \rangle$ of the probability distribution.
- c) Apply the method to the function Λ(s) = a ⋅ (s a)⁻¹, which is Laplace transform of a function describing the exponential decay of a pharmaceutical in time (t), and determine its mean lifetime ⟨t⟩.
- *AC= augmented credit for graduate students