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_______________________________________________________________________ 
This section has largely been adapted from M. A. Nowak, Evolutionary Dynamics, Belknap 
Press of Harvard University Press, Cambridge, 2006  

3. Population dynamics, evolution  

The dynamics of populations and evolution represent another 
application of the methods developed for the discussion of maps. 
In the following at first, a simplification is made in that the 
growth phenomena are treated as a smooth evolution along con-
tinuous degrees of freedom, even though it is clear that living 
entities are “quantized” and reproduce generation by generation. 
Consider first:  

Binary cell division. At time t, assume that there is just one 
cell (x0 =1). In the second generation, after division, the number 
of cells is doubled (n =2). Hence, the (smooth) replication law is 
given by the differential equation (DEq)  

                  with
dx

x r x r (n 1) 1,2,...
dt

         (31)  

In principle, r can be a number between 0 and 1, if not all cells 
divide, divide at divide at different times, or even die. This will 
lead to an effective reproduction rate, as explained below.   

DEq. 31 describes the gain in population and has the solution   

r tx(t ) x(t 0) e                            (32)  

Of course, cells also die, at a rate  

             
dx

x d x
dt

                            (33)  

which represents a loss to the population of cells. The average 
lifetime of a cell is =1/d. Combining gain and loss terms, one 
gets for the net rate of change in the population,  

                           eff

dx
x r d x r x

dt

   

         (34) 
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Obviously, reff is an effective reproduction rate corrected for the 
cell deaths. Therefore, if reff > 0, the population will grow expo-
nentially, but with a reduced rate. If reff < 0, i.e., if more cells die 
than reproduce, the population will die out exponentially. For r= 
d, the cell population remains stable at the same number. There-
fore, the quantity r-d or r/d is the control parameter governing 
the evolution of the population of interest, its “fitness.”  

Based on this simple math, one concludes that imposing the 
condition r=d guarantees population stability. In practice, this is 
not possible, since both r and d are subject to fluctuations mak-
ing rapid changes between r/d > 1 or r/d < 1. Nevertheless, ac-
tual populations do rarely grow or decay exponentially. Obvious-
ly, a description of a general population dynamics requires more 
complicated laws.  

One obvious improvement to the law of Equ. 34 is based on 
the realization that reff itself is typically not a constant but de-
pends on the size of the population reff = reff(x). More specifically, 
it should depend (perhaps monotonically) on how close the ac-
tual population size is to the limiting size K (x = K), which is as-
sumed to be a time-independent constant. Then, one has to con-
sider a varying effective reproduction rate that is a function of 
the difference (K-x), i.e., reff = f(K-x) with f(0)=0. And, since reff  
has to decrease, one also has to require that (dreff/dx)x=K<0. For 
population sizes x= K, one can approximate the function reff to 
first order in a Taylor expansion around x=K. Then   

          

eff
eff eff

K

eff eff

K K

dr
r (x) r (x K ) K x .....

dx

dr dr x
K x K 1

dx dx K

x
:r 1

K

   (35)  

where r>0. The last line invokes a redefinition of the replication 
factor r. As x increases, the effective rate of reproduction slows 
down, which is plausible. Combining Equs. 34 and 35, one has, in 
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essence, found a behavior of the population close to that de-
scribed by the Logistic Map:  

                   eff

dx x
x r (x) x r x 1

dt K
                 (36)  

Here, r is no longer a function of x but a constant factor. Inte-
grating this DE from initial condition x=x0, one gets the solution  

                  r t *t0
r t

0

K x
x(t ) e x K

K x e 1
          (37)  

With the asymptotic (t 

  

) limit x*= K. Interestingly, in equili-
brium the population assumes its maximum possible size. Given 
the procedures discussed in Section 2.3, it is easy to show that 
this is, in fact, a stable state of the population.   

Natural selection: Now the situation will be extended to in-
clude competition between two different subpopulations or spe-
cies, A and B, with numbers x and y, respectively. Without any 
relations between them and no upper boundary, the subpopula-
tions would each be described by the formalism just developed. 
Denoting with a and b the corresponding growth rates (“fit-
nesses”) for A and B, the time dependent population sizes would 
both grow exponentially:   

             
a t

b t

Species A : x a x x(t ) x(t ) e

Species B : y b y y(t ) y(0) e

 

         (38)  

If one wants to make a comparison between the subpopulations, 
one can either consider the difference 

 

= (x(t)-y(t)) or the ratio, 
(t)=x(t)/y(t). Obviously,  

              ( a b) tx(t ) x(0)
(t ) e

y(t ) y(0)
                     (39)  

Therefore, if b > a, subpopulation B will outpace population A 
and grow indefinitely. In comparison to A, species B appears fit-
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ter will displace A. This is the principle of selection or survival 
of the fittest.  

However, in nature there are always boundaries, to which both 
species would have to adjust, for example the total food supply 
that defines a maximum total population for the sum of A and B. 
How will the condition of a maximum total population   

                             x + y = 1   

 

  yx 0                         (40)   

normalized to unity, influence the competition between A and B? 
One would expect that the subpopulation with the greatest fit-
ness will outgrow the competition but now only grow to the max-
imum possible size.   

This can in fact easily be shown: 
One suspects again that the reproduction rates (or fitnesses) of A 
and B, a and b, respectively, are no longer constants but are 
functions of the numbers (x and y) of A and B present at any 
given time. Therefore, instead of Equs.38, one may assume  

     eff

eff

x x xa a (x,y)

b b (x,yy y y)
                     (41)  

with a function that should depend (in the simplest case) linearly 
on either x or y. At the very beginning, when x=y=0, then one 
should also expect that (x,y)=0. From Equ. 41 and the conser-
vation of the total population (represented by Equ. 40), one has 
the condition for the function :  

                    

1

y b (x,y) y

by y (x,

x a (x,y ) x

ax x (x,
( ) (x,y) (x,

y )
yax xby )

y)
y

     (42) 

This determines the function   

  (x,y) ax by

  

                           (43) 



U N I V E R S I T Y   O F

 
ROCHESTER

 
DEPARTMENT OF CHEMISTRY

 
PopDynEvol           W. U. Schröder

  
27 

as the average fitness (reproduction rate) of the entire popula-
tion. Upon insertion of the function into the rate equation for 
population A, one obtains  

   
x a ax by x a ax b(1 x) x

a b (a b)x x a b 1 x x
        (44)  

and finally  

          
x a b x 1 x

y b a y 1 y

 

                         (45)  

These functions are again reminiscent of the Logistic Map. 
What are the fixpoints of the DEq of Equ. 45? They are deter-
mined by the conditionx 0 , i.e., at x=0 (“extinction”) and at 
x=1 (“take over”) and correspondingly for y.    

The situation described by Equs. 41 is a special case of  

                              
c

c

x x x

y

a (x,y)

b (x,y)y y
                         (46)  

with c=1. In that case, survival of the fittest always occurs, and 
the growth of the species with the highest fitness is exponential. 
However, for many species, two individuals have to meet to re-
produce. The probability for two to meet increases with the 
second power of the population size (c=2)  

  
2

2

x x x

y

a (x,y)

b (x,y)y y
                        (47)  

Here, the constancy of the size of the total population is guaran-
teed by the function  

                                    2 2(x,y) ax by                           (48) 
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The resulting DEq is now much more complex than the Logistic 
Map and certainly highly non-linear. The general solution for any 
constant exponent c is given by,  

                                   
c 1c 1

x f x x 1 x

f x ax b 1 x
                   (49)  

which for c=1 reduces to Equs. 45. Of course, there is the cor-
responding equation for rate in y. Because of the factors x and 
(1-x) in the rate equation (Equ. 49), fixpoints are again at 
x1,2=0,1. This implies that for c=1, stable situations would result 
for homogeneous populations, either A or B, but no coexistence 
of both. The questions now are, whether the fixpoints are stable 
(attractors) or unstable (repellors). To decide that question, one 
can proceed and apply the criteria discussed in a previous sec-
tion, i.e., calculate the derivatives of function (49) at the fix-
points.  

However, for c 1, there is one more fixpoint:   

                                     3 1 c 1

1
x

1 a b
                          (50)  

i.e., there are three fixpoints altogether. It turns out that for dif-
ferent values of c, the behavior of the points x1, x2, and x3 is dif-
ferent:  

C x1

 

x2

 

x3

 

<1 unstable unstable stable 
=1 stable stable N/A 
>1 stable stable unstable 

 

This implies that for c>1, trajectories will be deflected away from 
x3, either to x=0 or x=1. If x (A) > x3, then A will outgrow B and 
displace it, and vice versa.   
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Figure 20: Population development for two initial conditions.  

However, for c<1, the point 0 < x3 < 1 is a stable fixpoint. This 
means that in this situation, populations A and B coexist with 
x*=x3 and y*=(1-x*) denoting the stable population sizes for A 
and B, resp. These situations can be studied “experimentally” 
with the MathCad code PopDyn.mcd.  

Mutation: Reproduction is not always perfect, sometimes A mu-
tates to B and vice versa. For simplicity, consider only these two 
populations and fitness rates of a=b=1. Then also the mean fit-
ness rate averaged over the entire population is unity: 

 

= 1.    

Assume the mutation rates mA (A

 

B) and mB (B

 

A), respec-
tively. Then, one obtains from a consideration of gain and loss 
terms the rates of reproduction,   
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                         A B

A B

x 1 m x m y x

y m x 1 m y y
                       (51)  

and therefore,  

                A B B A B

A B A A B

x 1 m x m 1 x x m m m x

y m 1 y 1 m y y m m m y
  (52)  

Again, because of the condition x+y=1, the two DEqs. (52) are 
linearly dependent and can be represented by just one,  

                                 B A Bx m m m x                          (53)  

Obviously, there is one fixpoint (x 0) at  

                             B A
1 1

A B A B

m m
x y

m m m m
               (54)  

This is a stable fixpoint, because the velocities for x-values close 
to x1 drive the population always towards this point:  

                  

B A B

B A BB
1 B

A B A B

B A BB
1 B

A B A B

x m m m x

m m mm
x x x m 0

m m m m

m m mm
x x x m 0

m m m m

    (55) 

This implies that mutation provides a stable situation, where the 
two populations A and B coexist. It is plausible that the popula-
tion with the smaller mutation rate is stable at a higher fraction 
of the total. Of course, if one mutation rate is much larger than 
the other, e.g., mA »

 

mB˜0, then Equ. 53 degenerates to  

                        B A B Ax m m m x m x                      (56)  
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This DEq. has an exponentially decaying solution x(t). Population 
A becomes extinct, because there is a constant drain on it and no 
gain.  

To generalize the formalism to many different (possible) popu-
lations, it is useful to use vector algebra. This is illustrated first 
with the above 2 populations A and B. Their time dependence 
can be considered in an (A, B) or (x, y) space. In this space, 
any partition of the total population can be represented by posi-
tion vector x . The corresponding rates of change make up the 

velocity vectorx ,  

                               and
y y

x : x :
x x

                       (57)  

Position and velocity vectors are connected by a 2x2 Transition 
Matrix Q  

                             A B

A B

m 1 m
Q :

1 m m
                         (58)  

such that the velocity and position vectors are connected by the 
matrix equation  

                                      x Q x x                             (59)  

Q is a stochastic matrix. It has no particular symmetry, except 
that the sum of the elements in each row is unity. Its elements 
are all in the interval [0, 1], as required for probabilities. The 
stochastic transition matrix distributes the original members of a 
population over all possible outcomes of the reproductions, such 
that the total population remains constant:  

                             withij ij
j

Q : q q 1                       (60) 

Now, for n different populations (xi, i=1,…,n), the transition 
matrix is of the n x n type, and the corresponding matrix equa-
tion for the velocity vector is exactly equal to that of Equ. 59. 
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Finding the fixpoints is now equivalent to determining the eigen-
values of the stochastic matrix Q,  

                        0 Q x x Q x x                   (61)  

Since the average fitness is again assumed to be equal to 

 

=1, 
the problem of finding a fixpoint, a possibly stable heterogeneous 
population, simplifies to  

                                   Q I x 0                                   (62)  

where I is the n x n unit matrix. This equation is equivalent to a 
set of n homogeneous equations with n unknown populations 
which are subject to one boundary condition (sum = 1). Hence, 
the system has non-trivial solutions for the populations {x1, x2,…, 
xn}.   

Genetics: One of the early problems in understanding population 
dynamics was the fact that, without mutation, even after many 
generations the diversity of the population does not disappear. 
One does not end up with one genotype representing the com-
pletely homogeneous mix of all types that ever were present in a 
population. Today, it is known that genotypes do not “blend,” but 
different parts of the genome are reshuffled and recombined in 
the offspring. The genetics is illustrated in the following simple 
example of reproduction of diploid organisms.   

Consider sexual reproduction of diploid organisms possessing 
two matched sets of chromosomes (A1 and A2) in the cell nuc-
leus, one set from each parent. The chromosomes are slight va-
riants of the same genome and occur with probabilities    

                     1 1 2 2 1 2: 1 : 1 1A p A p p p             (63)  

The chromosomes can combine to make 3 different genotypes, 
different types of individuals in the population, in each genera-
tional change (reproduction). 
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        1 1 11 1 2 12 2 2 22, : 1 , : 1 , : 1A A P A A P A A P   (64)  

with the corresponding different probabilities Pij. The total proba-
bility has to add up to unity:  

                              11 12 22P P P 1                             (65)  

Calculate the probabilities to find the two types of chromosomes 
in the population at some point in time (Generation X)   

                  1 1 11 12 2 2 22 12
1 1

: :
2 2

A p P P A p P P            (66)  

These expressions represent the fact that A1 is contained twice in 
{A1, A1} but only once in {A1, A2}, and similar for A2.  
Now assume that mating occurs randomly between genotypes. 
The random probabilities for producing the 3 genotypes in the 
following generation (Generation Y) are given by the relative 
probabilities (differentiated by a prime):  

                 
2 2

11 1 12 1 2 22 22P p P p p P p               (67)  

Obviously, the chromosome frequencies should not change, if 
none gets lost. That this is true in the formalism, one can see, 
e.g., by computing   

            
2

1 11 12 1 1 2 1 1 2 1
1
2

p P P p p p p p p p         (68)  

and equivalent for 2 2p p . Therefore, one also finds that the 
number of different genotypes in the Generation Y population has 
the same relation to the numbers of chromosomes than for Gen-
eration X:  

  
2 2 2

11 1 1 12 1 2 1 2 22 22 2P p p P p p p p P p

 

(69) 




