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III. Basic Quantum Mechanics
(..... to Schrédinger and Heisenberg)

1. Wave function and Schrédinger Equation

The major insight derived from ex-
perimental observations by a number of
physicists (Planck, Bohr, de Broglie,
Schrédinger and Heisenberg) in the
early part of the 20t century is that
e All physical entities have a dual char-
acter: They can appear as particles
(massive or mass-less) or as waves, de-

_ pending on the method of their observation.
:'ggﬁuﬁar’citae:a‘gtae‘;ei::ve e  Particles are guided/organized along a degree of

macroscopic wave guides  freedom x by associated wave functions y(x,t) which

microscopic water mole- . .
cules. P behave according to the rules of wave mechanics.

. The wave function is a stochastic function, in that
the differential probability to find a particle at time t in an
element dx around x is given by

dP =|w(x,t)| -dx (1)

pP= IdP(x,t): jdx|w(x,t)|2 = Idx w(x,t)*y(x,t)=1 (2)

This implies that the proper wave function has to be normal-
ized, or normalizable, to represent a probability (amplitude).
Equation 2 is a special case of a more generally defined scalar
product between two wave functions, ¥(x,t)and ¢(x,t),
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(wixtlolxt)):= [ dxp(xt)*plxt) (3)

This scalar product is zero for any two “orthogonal” func-
tions. In fact, orthogonality is defined through this relation.

A complication arises for “continuum” wave functions, corre-
sponding to the continuum of kinetic energies available to free
particles. For such wave functions, the scalar product (Equ. 3)

of two functions ¥ ,(x,t)andy ,(x,t)

(ot a(x,8)i= [ dkwr, (6,8)* o (x,8) < S(p=p') ()

defines a distribution, the so-called “delta function.” The nor-
malization integral of Equ. 2 gives a corresponding result.
Such distributions appear as parts of integrands in an integral,
where they work as projectors of the integrand evaluated for
zero argument of the delta function.

e Each experimental observable A is represented by a quantum

mechanical (differential) operator%A\ that, when applied to a
wave function, “projects” out an average expectation value of
the observable,

A=(A)= [ dw (x )Ap(xt) (5)

e For non-relativistic entities, the wave function is a solution to
the time dependent Schrédinger Equation
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., 0 ~
Ihal//(x,t)=H w(x,t) (6)
where H=K+V is the Hamiltonian total energy operator, a
sum of kinetic and potential energy operators.
e For stationary states, the wave function is solution to an

eigen-value problem involving the time-independent
Schrodinger Equation

,-h%,/(x,t)zﬁ w(x,t)=Ep(xt) (7)

where E is the total energy eigen-value, the energy of the
state of the system described by the wave functiony(x,t).

e For independent degrees of freedom, X, y, z, the corresponding
wave function factorizes,

W(r,t)=y(x,t)-dy,t)-p(z,t) (8)

into a product of independent wave functions, one for every
degree of freedom.

e Operators for systems that evolve along independent degrees
of freedom are sums of individual operators

A(F)=A +A +A, (9)

each one of which operates only on one degree of freedom.
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For example, the momentum operator for a particle in a three-
dimensional system can be written as,

ox (10)

<
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g0, h2{82+82+62} (11)

e operatorsstationary states, the wave function is solution to an
eigen-value problem involving the time-independent Schro-
dinger Equation

in Ly (x,t)=Ay(xt) =E p(x.t)
ot (12)

Possible scenario:
Free particle, spatially not localized - traveling wave
Bound particle, spatially localized - standing wave



