ROCHESTER

III. Basic Quantum Mechanics

(..... to Schrödinger and Heisenberg)

1. Wave function and Schrödinger Equation

The major insight derived from experimental observations by a number of physicists (Planck, Bohr, de Broglie, Schrödinger and Heisenberg) in the early part of the $20^{\text {th }}$ century is that - All physical entities have a dual character: They can appear as particles acter: They can appear as particles
(massive or mass-less) or as waves, depending on the method of their observation.

Figure 1: Water waves have a granular character. The macroscopic wave guides microscopic water molecules.
 - Particles are guided/organized along a degree of freedom x by associated wave functions $\psi(x, t)$ which behave according to the rules of wave mechanics.

- The wave function is a stochastic function, in that the differential probability to find a particle at time t in an element $\mathrm{d} x$ around x is given by

$$
\begin{equation*}
d P=|\psi(x, t)|^{2} \cdot d x \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
P=\int_{-\infty}^{+\infty} d P(x, t)=\int_{-\infty}^{+\infty} d x|\psi(x, t)|^{2}=\int_{-\infty}^{+\infty} d x \psi(x, t)^{*} \cdot \psi(x, t)=1 \tag{2}
\end{equation*}
$$

This implies that the proper wave function has to be normalized, or normalizable, to represent a probability (amplitude). Equation 2 is a special case of a more generally defined scalar product between two wave functions, $\psi(x, t)$ and $\varphi(x, t)$,

$$
\begin{equation*}
\langle\psi(x, t) \mid \varphi(x, t)\rangle:=\int_{-\infty}^{+\infty} d x \psi(x, t)^{*} \cdot \varphi(x, t) \tag{3}
\end{equation*}
$$

This scalar product is zero for any two "orthogonal" functions. In fact, orthogonality is defined through this relation.

A complication arises for "continuum" wave functions, corresponding to the continuum of kinetic energies available to free particles. For such wave functions, the scalar product (Equ. 3) of two functions $\psi_{p}(x, t)$ and $\psi_{p^{\prime}}(x, t)$

$$
\begin{equation*}
\left\langle\psi_{p}(x, t) \mid \psi_{p^{\prime}}(x, t)\right\rangle:=\int_{-\infty}^{+\infty} d x \psi_{p}(x, t)^{*} \cdot \psi_{p^{\prime}}(x, t) \propto \delta\left(p-p^{\prime}\right) \tag{4}
\end{equation*}
$$

defines a distribution, the so-called "delta function." The normalization integral of Equ. 2 gives a corresponding result. Such distributions appear as parts of integrands in an integral, where they work as projectors of the integrand evaluated for zero argument of the delta function.

- Each experimental observable A is represented by a quantum mechanical (differential) operator \hat{A} that, when applied to a wave function, "projects" out an average expectation value of the observable,

$$
\begin{equation*}
A=\langle\hat{A}\rangle=\int_{-\infty}^{+\infty} d x \psi^{*}(x, t) \hat{A} \psi(x, t) \tag{5}
\end{equation*}
$$

- For non-relativistic entities, the wave function is a solution to the time dependent Schrödinger Equation

ROCHESTER

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(x, t)=\hat{H} \psi(x, t) \tag{6}
\end{equation*}
$$

where $\hat{H}=\hat{K}+\hat{V}$ is the Hamiltonian total energy operator, a sum of kinetic and potential energy operators.

- For stationary states, the wave function is solution to an eigen-value problem involving the time-independent Schrödinger Equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(x, t)=\hat{H} \psi(x, t) \equiv E \psi(x, t) \tag{7}
\end{equation*}
$$

where E is the total energy eigen-value, the energy of the state of the system described by the wave function $\psi(x, t)$.

- For independent degrees of freedom, x, y, z, the corresponding wave function factorizes,

$$
\begin{equation*}
\Psi(\vec{r}, t)=\psi(x, t) \cdot \phi(y, t) \cdot \varphi(z, t) \tag{8}
\end{equation*}
$$

into a product of independent wave functions, one for every degree of freedom.

- Operators for systems that evolve along independent degrees of freedom are sums of individual operators

$$
\begin{equation*}
\hat{A}(\vec{r})=\hat{A}_{x}+\hat{A}_{y}+\hat{A}_{z} \tag{9}
\end{equation*}
$$

each one of which operates only on one degree of freedom.

ROCHESTER

For example, the momentum operator for a particle in a threedimensional system can be written as,

$$
\hat{p}=\frac{\hbar}{i} \vec{\nabla}=\frac{\hbar}{i}\left(\begin{array}{c}
\frac{\partial}{\partial x} \tag{10}\\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right)=\hat{p}_{x}+\hat{p}_{y}+\hat{p}_{z}
$$

Correspondingly, the Hamilton operator is represented by

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m} \Delta=-\frac{\hbar^{2}}{2 m}\left\{\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right\} \tag{11}
\end{equation*}
$$

- operatorsstationary states, the wave function is solution to an eigen-value problem involving the time-independent Schrödinger Equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi(x, t)=\hat{H} \psi(x, t) \equiv E \psi(x, t) \tag{12}
\end{equation*}
$$

Possible scenario:
Free particle, spatially not localized \rightarrow traveling wave Bound particle, spatially localized $\quad \rightarrow$ standing wave

