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III. Basic Quantum Mechanics 
(….. to Schrödinger and Heisenberg) 
 

1. Wave function and Schrödinger Equation   

 

The major insight derived from ex-

perimental observations by a number of 

physicists (Planck, Bohr, de Broglie, 

Schrödinger and Heisenberg) in the 

early part of the 20th century is that   

• All physical entities have a dual char-

acter: They can appear as particles 

(massive or mass-less) or as waves, de-

pending on the method of their observation. 

• Particles are guided/organized along a degree of 

freedom x by associated wave functions ( x ,t )  which 

behave according to the rules of wave mechanics. 

• The wave function is a stochastic function, in that 

the differential probability to find a particle at time t in an 

element dx around x is given by  

 

                            
2

dP (x ,t ) dx=                                   (1) 

.  

                        

2
1P dP(x ,t ) dx (x ,t ) dx (x ,t )* ( x ,t )  

+ + +

− − −

= = =  =     (2) 

This implies that the proper wave function has to be normal-

ized, or normalizable, to represent a probability (amplitude). 

Equation 2 is a special case of a more generally defined scalar 

product between two wave functions, ( x ,t ) and ( x ,t ) , 

 

Figure 1: Water waves have 

a granular character. The 

macroscopic wave guides 

microscopic water mole-

cules. 
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           ( x ,t ) ( x ,t ) : dx ( x ,t )* ( x ,t )   
+

−

=                 (3) 

 

This scalar product is zero for any two “orthogonal” func-

tions. In fact, orthogonality is defined through this relation.  

 

A complication arises for “continuum” wave functions, corre-

sponding to the continuum of kinetic energies available to free 

particles. For such wave functions, the scalar product (Equ. 3) 

of two functions p( x ,t ) and p ( x ,t )   

( )p p p p( x ,t ) ( x ,t ) : dx ( x ,t )* ( x ,t ) p p    
+

 

−

=   −   (4) 

 

defines a distribution, the so-called “delta function.” The nor-

malization integral of Equ. 2 gives a corresponding result.  

Such distributions appear as parts of integrands in an integral, 

where they work as projectors of the integrand evaluated for 

zero argument of the delta function.  

 

• Each experimental observable A is represented by a quantum 

mechanical (differential) operator Â  that, when applied to a 

wave function, “projects” out an average expectation value of 

the observable, 

 

                            
*ˆ ˆA A dx (x ,t )A ( x ,t ) 

+

−

= =                        (5) 

 

• For non-relativistic entities, the wave function is a solution to 

the time dependent Schrödinger Equation 
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                              ˆi ( x ,t ) H ( x ,t )
t
 


=


               (6) 

        

       where ˆ ˆ ˆH K V= +  is the Hamiltonian total energy operator, a 

       sum of kinetic and potential energy operators.  

 

• For stationary states, the wave function is solution to an    

eigen-value problem involving the time-independent 

Schrödinger Equation 

 

                        ˆi ( x ,t ) H ( x ,t ) E ( x ,t )
t
  


= 


                       (7) 

 

     where E is the total energy eigen-value, the energy of the  

     state of the system described by the wave function ( x ,t ) .  

 

• For independent degrees of freedom, x, y, z, the corresponding 

wave function factorizes, 

 

                  (r ,t) (x,t) (y,t) (z,t)   =                             (8) 

 

into a product of independent wave functions, one for every 

degree of freedom. 

 

• Operators for systems that evolve along independent degrees 

of freedom are sums of individual operators 

 

                            x y z
ˆ ˆ ˆ ˆA(r ) A A A= + +                                (9) 

 

each one of which operates only on one degree of freedom. 
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For example, the momentum operator for a particle in a three-

dimensional system can be written as, 

 

                    

 
 


 
 

=  = = + +
 
 
 

 
 

ˆ ˆ ˆ ˆx y z

x

p p p p
i i y

z

                   (10) 

 

Correspondingly, the Hamilton operator is represented by 

 

              
= −  = − + + 

    

2 2 2 2 2

2 2 2
ˆ

2 2
H

m m x y z

                 (11) 

 

 

 

 

• operatorsstationary states, the wave function is solution to an 

eigen-value problem involving the time-independent Schrö-

dinger Equation 

 

                        

ˆi ( x ,t ) H ( x ,t ) E ( x ,t )
t
  


= 

                     (12) 

 

 

 

 
 
Possible scenario: 
        Free particle, spatially not localized   → traveling wave 
        Bound particle, spatially localized       → standing wave 
 


