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Monte Carlo Random Sampling 
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 pling method generates what 
can be called "artificial data" 
of a prescribed form, repre-
sented, e.g., by a functional re-
lation y(x) between independent 
(x) and dependent (y) variables. 
The simplest Monte Carlo 
simulation method is called the 
Rejection Method. It is used in 

cations with normally distributed data sets in the MATHCAD 
 mathcad\MonteCarlo-01i.mcd. The method is very useful in 
umerical evaluation of multi-dimensional integrals of possi-
omplicated functions of several variables, which may not 

 analytical primitive functions.  
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e following, this method is illustrated with the simple case of 
erical integration of a function f(x) of one variable x over the 
al [a, b]. As shown in the sketch, one draws a graph of the 

ion f(x) and encloses that part of the function to be integrated 
n a (not necessarily, but preferably the smallest) rectangle of 
A, in the example A = h$(b - a). Then, a large number of pairs 
al numbers {xi, yi} are chosen randomly within the area A. 
 pair {xi, yi} is tested as to whether or not yi [ f(xi),  i.e., 
her or not the point {xi, yi} lies within the area below the 
 f(x) (see figure above). If this is the case, the point is ac-

d for calculating the integral , otherwise, the point is  dx f x
a

bz ( )
ted. Counting the number Nacc of accepted points out of the to-
mber Ntot of random points drawn, one has a measure of the 



 

 U N I V E R S I T Y   O F 
ROCHESTER DEPARTMENT OF CHEMISTRY 

Prob-MonteC        W. Udo Schröder  Tutorial   
2 

       
integral, since the area under the curve scales to the total area like 
the ratio Nacc /Ntot   
 

                      dx f x N
N

Aacc

tota

b

( ) = ⋅z                                (1) 

 
This is a plausible example of the general Monte Carlo integration 
rule 
 

                              dx f x f b a b a
a

b

fz ≈ − ± −( ) b g b gσ   (2) 
 
with the statistical error involving the standard deviation  
 

                         σ f

f f
N

≈
−2 2

  (3) 

 
The averages and errors (see also: Prob-Moments.doc) are defined 
with respect to the functional values at the x coordinates of the N 
sampling points {xi, yi}: 
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The ± term in Equ. 2 with the standard deviation of Equ. 3 repre-
sents only an error estimate for the value of the integral obtained 
with N points. For a more accurate error determination of the 
Monte Carlo integration method, books on numerical analysis 
should be consulted. 
 



 

 U N I V E R S I T Y   O F 
ROCHESTER DEPARTMENT OF CHEMISTRY 

Prob-MonteC        W. Udo Schröder  Tutorial   
3 

       
It is straight-forward to check the consistency of the example with 
the general method defined in Equ. 2. Realizing that, for the ex-
ample, …f  = h$ (Nacc /Ntot), and inserting this into Equ. 2, one ob-
tains the earlier result of Equ.1. At the same time, it is obvious 
from Equ. 2 that 
 
                                         f x f x f( ) ( )≈ ±σ   (5) 
with  

                         f x N x
N x

hacc

tot

( ) ( )
( )

= ⋅               (6) 

 
Here, the sampling is done at a particular abscissa value x, i.e., the 
set {(xi, yi)| xi = x} is chosen and the number Nacc of acceptable 
points is counted out of a total of Ntot draws. Then, the number of 
accepted points is proportional to the average of the function f at 
the argument x, namely 
 

                          N x f x N x
hacc

tot( ) ( ) ( )
=       (7) 

 
It is approximately equal to the actual value of the function f at ar-
gument x, 
 

                            N x f x N x
h

N x
hacc

tot
f

tot( ) ( ) ( ) ( )
= ±σ    (8) 

 
where the second term indicates again the estimated uncertainty.  
 
It follows from the above discussion that randomly chosen pairs 
{xi, yi} with  yi [ f(xi) have a probability distribution given by the 
function f(x),   
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N x

f xacc

tot
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( )
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For example, there are many pairs with x-values where the magni-
tude of f is large, and very few pairs represent the function where it 
is small. It also does not matter, in which sequence the various ar-
guments x are sampled. So, normally the pairs {xi, yi} are chosen 
at random with respect to both x and  y. Since P(x) is given by the 
fraction of the total number of points drawn, it is already properly 
normalized to unity. This is the essence of Monte Carlo random 
sampling.  
 
The principle is applied to a normal (Gaussian distributed) sample 
of x values with an average value of …x  = x0= 50 and a standard 
deviation of σx = 5. The two figures above represent the same 
Gaussian distribution, on the left a very small sample of only 100 
events in ±30 bins about the average, and on the right 1000 events 
over the same range of x values. In either figure, the frequency 

P(x) of finding the value x in the sample of accepted points (cf. 
Equ. 9) is plotted vs. x. It is obvious that a small sample gives only 
a rough idea of the general shape of the function to be simulated 
numerically, here a Gaussian, with significant statistical errors. 
Increasing the sample size by a factor 10, to 1000, leads to a much 
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more accurate representation, as illustrated by the figure on the 
right. 
 
The rejection method discussed above is universally applicable. 
However, depending on the functional relationship to be simu-

lated, a large fraction of the randomly 
drawn pairs {xi, yi} may be rejected and, 
hence, useless. If this is the case, the 
method is not very effective and the com-
puting time needed to generate a large 
statistical sample may become very long. 
In special cases, the alternative Transfor-
mation Method may be faster. This latter 
method makes use of the bunching 

bunching effected by an appropriate reflection of a randomly dis-
tributed set {xi} of x values at a function f(x). As illustrated in the 
sketch, if the x-values are uniformly distributed, the values  y = 
f(x) are compressed, as given by the slope dy/dx. The smaller this 
slope, the stronger the bunching of the corresponding y-values: 

f(x)

xdx

dy

 
               (10) dy f x dx= ′ ⋅b g
 
where f ' is the derivative of f. If the x-values are random, i.e., 
P(x)= const., then the y-values are distributed according to 
 

                                  P y P x dy
dx

f x( ) ( ) ( )= ⋅FHG
I
KJ ∝ ′
−

−
1

1b g             (11) 

 
In other words, according to Equ. 11, choosing a random sample 
{xi}, the values of the set {yi= f(xi)} simulate the function (f '(x))-1.  
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Suppose that one wishes to simulate a probability distribution P(x) 
= f(x) instead of (f '(x))-1. If it is possible to obtain a function g(x), 

such that 
 
                                           (g '(x))-1 
= f(x)                                 (12) 
 
i.e., if it is possible to find the 
primitive function (integral) of 
[f(x)]-1, 
                     
                                        

g x dx
f x

x

( )
( )

= ′
′z 1

                           (13) 
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then the set {yi =g(xi)} built upon the random set {xi} has the de-
sired probability distribution P(x) = f(x). 
 
Consider the example of a hyperbolical probability distribution  
 

                      P x f x a
b x

( ) ( )= =
+   (14) 

 
to be simulated. Obviously, the inverse of this function can easily 
be integrated, yielding 
 

               g x dx b x
a

b
a

x
a

x
x

( ) = +L
NM
O
QP = +z 1 2

            (15) 

 
Now, choose a random set {xi} which can be done with the code 
mathcad\MonteCarlo-01i.mcd  and construct the set {yi =g(xi)}, 
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also done in this code for the above example. The resulting fre-
quency distribution {yi} is plotted as open circles {yrdm} in the fig-
ure. The analytical function f(x) defined in Equ. 14 is indicated by 
the dashed curve (fN). Obviously, the random points outline the 
function well, but show a statistical scatter given by the number of 
events drawn.  
 
Brief discussions of Monte Carlo Methods can be found in 
 
R.H. Landau and M.J. Paez, Computational Physics, Wiley Inter-
science, New York, 1997 
 
N. J. Giordano, Computational Physics, Prentice Hall, Upper Sad-
dle River, 1997 


