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Partition of probability/statistical entropy 

 

The formal information I (Equ. Error! Reference source not found.

) gained through the acquisition of knowledge about which of any of the 

possible configurations is realized, represents the information that the 

totality of nats or bits of the  states can carry. This information is nu-

merically equal to the number (=
2og  ) of questions that have to be 

posed in order to obtain certainty.  

 

It is plausible that any asymmetry, any restriction in the probabilities 

for the various system configurations would imply a bias, which reduces 

the information content. For example, a 12-bit computer cell with two 

broken bits can not carry more information than a 10-bit word. There-

fore, an equipartition of the total probability 

 

 i ii
P p , p p const.= = =  (1) 

  

among all system states (configurations) maximizes the infor-

mation and the statistical entropy (cf. Equ. 

Error! Reference source not found.). In such a situation, where all 

configurations have an equal a priori probability, a many times repeated 

experiment is expected to exhibit every configuration with the same 

equal a posteriori (empirical) probability. For example, measuring 

10000 times the same system with 3 equally probable configurations 

will show each one of them approximately 3300 times (1/3 of the total 

number of interrogations).    

 

Mathematically the partition of the total probability among the sys-

tem configurations that corresponds to maximum information (entropy) 

can be obtained by varying the probabilities pn under the constraint of 

the normalization of all probabilities. This task is achieved efficiently 

with the method of Lagrange multipliers. To illustrate the method, 

consider a 1-dimensional function f(x). Here a “constrained maximum” 

of f(x), under the constraint g(x)=c=const., is found by searching for 

the maximum of the related function 
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 f ( x) f ( x) g(x) c= − −    (2) 

 
where  is an arbitrary constant. Obviously, only along a path where the 

constraint g(x)=c is fulfilled, are the functions f and f identical, 

f (x) f(x)= . 

 

In the case of interest here, the constraint is given by the normali-

zation condition of the total probability for any of the  configurations,  

 

 1 i

i 1

g(p ,..., p ) p 1





=

= =  (3)  

 

Then, in the usual way, the maximum of the information is found by 

setting to zero all first derivatives of f with respect to individual proba-

bilities pn (for configuration n to be occupied, n=1,…,,),  

 

                    ( )m m i
n m 1 i 1

p n p p 1 0
p






 

= =

   
 − + − = 
    

         (4) 

 

The normalization condition of Equ. (3) has been multiplied by a yet 

undetermined but constant Lagrange multiplier  and added to the 

function to be maximized. This procedure yields 

 

 ( )n n
n

1
n p p 0 n 1,...,

p
− −  + = =   (5) 

                                                               

or 

                                 ( )nn p 1= −                          (6)

   

and  

                                
( )1

np e p const.
−

= = =                      (7) 
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implying an equal (a priori) probability for all n. From the normali-

zation condition n

n 1,..,

p 1

= 

=  it follows immediately that 

                                 np p 1 const= =  =                       (8) 

and 

 ( ) ( )1 1
n

n 1 n 1

1 p e e
 

 
− −

= =

= = =     (9) 

 

which determines the Lagrange multiplier. This is the condition for max-

imum missing information concerning the locations of the particles 

of interest. It also signifies the situation for a maximum of infor-

mation gained, when the occupation of the single-particle states is 

disclosed. 

 

In analogy to Equ. Error! Reference source not found., the sta-

tistical entropy used in statistical mechanics for a system of N particles 

populating a set of  configurations (“micro-states”) is defined as 

                                                 ( )B n n

n 1

S k p n p 0



=

= −                                   (10) 

 

where 231.38 10Bk J K−=  is the universal Boltzmann constant, which 

endows this information quantity with a non-trivial but unnecessary di-

mension that can obscure the real meaning of this important observable. 

If the system is interrogated N times and configuration n is observed Nn 

times out of N, the a posteriori (empirical) probabilities are deter-

mined by pn = Nn/N. These probabilities fulfill the normalization condi-

tion   

                                      n
n

n 1 n 1

N
p 1

N

 

= =

= =                       (11) 

 

Following the same arguments as above for the information, one 

finds that the entropy is maximized for an equal population of all 

configurations (micro-states) with equal a priori probabilities pn 

= 1/. In this case of independent individual objects that occupy with 
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equal a priory probability all  available states, Equ. 

Error! Reference source not found. translates into the maximum 

statistical entropy, 

 

 ( )max B B n n

n 1

S S k n k p n p 0


=

= =   = −   (12) 

 
The left hand side of this equation is the famous Boltzmann Equation 

relating the number () of available micro-states to the phenomenolog-

ical entropy, a state function defining macroscopic system states in phe-

nomenological thermodynamics. The right hand side closes contact to 

the microscopic information content. The constant kB, providing the in-

formation observable with an artificial dimension, makes more sense in 

phenomenological thermodynamics. The entropy is naturally bounded 

by the two fixed limits,  

 

 max0 S S   (13) 

 

where Smax is attained for equal a priori probabilities, for any physical 

system it is itself a distribution that can be characterized by average 

expectation value, fluctuations and higher moments.  

 

In a similar fashion, the method utilized above for evaluating the 

maximum information/entropy under the constraint of an equipartition 

of the total a priori probability can be extended to other constraints. For 

example, for a multi-particle system it is important how the system en-

ergy E is distributed among all  configurations, i.e., micro-states. For 

an isolated (“micro-canonical”) system the total energy E is con-

served, as are other observables. Then, all members of the set of pos-

sible equivalent configurations must have exactly the same energy,  

 

 
iE E i 1,....,= =   (14) 

 

Otherwise, the configurations would not be completely equivalent, i.e., 

not have the same a priori probabilities. In a statistical ensemble, this 

fixed energy E would be distributed over all members of the ensemble 
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with equal a priori probabilities. Systems that are not completely iso-

lated and allow some exchange of energy with their surroundings are 

called “canonical.” Here, the energies of the various configurations are 

subject to fluctuations about the averages, <Ei>. Exactly equal a 

priori probabilities cannot be expected for these configurations. 

At most some energy averages can be well defined and assumed to have 

approximately the same value for every configuration: 

 i i i

i 1

E E p : E


=

=  =  (15) 

 
Here, iE  is the weighted average (mean) taken over all configurations. 

The condition that only small variations should exist between the mean 

energies Ei of the configurations implies that the mean square devia-

tion (variance) of these energies  

 

 ( )
22

E i i i

i 1

E E p 0


=

= −    (16) 

 

be small compared to the average, i.e., E E . For an isolated, micro-

canonical system, there are no energy fluctuations, E 0 = . 

 

Considerations of the maximum constrained information will re-

veal whether such a situation is possible and what the a priori probabil-

ities pi would look like. Certainly, because of an additional con-

straint, for a given energy E, the information/entropy cannot ex-

ceed the one obtained for a micro-canonical system with a mini-

mum of constraints (total probability normalized). 

 

A search for the maximum information/entropy has to take into ac-

count now two boundary conditions, Equ. (3) and Equ. (15). Therefore, 

the maximization condition (4) has to be extended to  

 

 ( ) j j

j 1

B m m 1 2
n m 1

i

i 1

k p n p 0
p

p E p1 E


 




= =



=

      − −− + + = 
        

   (17) 
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with two Lagrange multipliers, 1  and 2 . For the constraint maximum 

information/entropy one now obtains the condition 

 

  ( )B n 1 2 nk n(p ) 1 E 0 − + + + =   (18) 

 
This result implies that 

              1
n

n2

B

p exp 1 n 1,.. ,
E

.
k

  +
= − =  

 
 (19) 

 
where 1 B/ k  is dimensionless and 2 B/ k  is an inverse energy. Obvi-

ously, the probabilities are not equal but depend on the energies En of 

the corresponding states. The normalization condition is now written as 

   

1 21 Enk kB B
n

n 1 n 1

1 p e e

   − 
 

= =

= =    (20) 

 
a product of a constant and an energy sum. Obviously, the constant 

factor in Equ. (20) is equal to the inverse of the sum over the individual 

energy terms, 

 

 

1 21 Enk k EB B n

n 1 n 1

Z e e : e

 



   − 
−  

= =

= = =   (21) 

 
with the definition 

2 Bk 0 = −  , the inverse of a characteristic energy. 

This function Z=Z() is also known as the (canonical) partition sum. 

According to Equ. (21) it can be cast both into a closed form (left) and 

as a sum over all configurations. Hence the normalization condition is 
recast as 

 En
n

n 1 n 1

1
p e 1

Z


 

− 

= =

=  =   (22) 

 
This is a general result, valid for any number of configurations, their 

energy spectra (En) and varied system parameters 1 and 2.  

 

Often groups of several ( ) states have the same energies, i.e., they 

are energy degenerate and bunched at some energy levels E, E’, etc. 
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If the degeneracy (number of states at energy level E) is given by the 

function ( )E , the partition function in Equ. (21) can be written  

   ( )
( ) ( ) ( )

( )E E E E E

...E times E times E

Z e ... e e ... e ... E e    

 

 
 −  −  −  −  − 



= + + + + + + =   (23) 

 

According to Equ. (19), there is a term-by-term equivalence in Equ. 

(22). One therefore concludes that the a priori probabilities for ca-

nonical system configurations are not equal but dependent on 

the energy. Configuration by configuration, one has the normalized 

probability 

 En
n

1
p e

Z

− 
=   (24) 

 

Accordingly, the probabilities for the populations ( )p E  of energy levels 

E are given by 

 ( )
( ) EE

p E e
Z

 − =   (25) 

 

The requirements that the probabilities must be normalizable and 

that variations between the mean energies of equivalent (similar prob-

abilities) be small suggests that the inverse-energy parameter  be pos-

itive,  > 0. Then, the populations for system configurations decrease 

exponentially with their energy, Configurations with extreme energies 

are simply not significantly populated. In fact, for thermodynamic sys-

tems independent considerations discussed further below show a rela-

tion of the parameter with the “canonical temperature” T, i.e., 

( )1 Bk T = . This implies that the information contained in such a sys-

tem is incomplete at any temperature, reduced due to the decreased 

probability for energetic states. 

 

The partition sum contains all relevant physical information on the 

system. Z is a generating function for the system probability dis-

tribution. This feature can be demonstrated by the following examples. 

The derivative of ( )n Z  with respect to the energy Ei projects the prob-

ability of configuration i out of the partition sum, 
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 ( )
1

1 E En i
i

i i n

n Z e e p
E Z E Z

 



−  − 

=

 − 
− = = =

    (26) 

 

Here the chain rule 

 ( )
1

n Z Z
x Z x

 
=

 
 (27) 

 
has been used to generate the required normalization factor 1/Z. Simi-

larly, taking the derivative of ( )n Z  with respect to - produces the mean 

energy per configuration: 

 

          ( ) n nE E
n n n n

n 1 n 1 n 1

1 1
n Z e E e E p E E

Z Z

 

 

  
−  − 

= = =

 − 
− = = =  = =

 
    (28) 

 

Taking the result from Equ. (18), multiplying by pn and summing over 

all configurations yields a connection between entropy, partition func-

tion and mean energy per configuration 

 

                   

( ) ( ) 

( )

B n n 1 B 2 B n

n 1

B n 1 n 2 n n

n 1 n 1 n 1

B 1 B B

0 k p n(p ) 1 k k E

S k p p p E

S k k E S k n(Z) E

 

 

  



=

  

= = =

= − + + + =

= − + +

= − − −   = −  −   



    (29) 

 
This results finally yields an expression for the macroscopic (mean) in-

formation/entropy in terms of the partition function Z and the expecta-
tion value of the energy, 

 

 BS k nZ E= +    (30) 

 
Equivalently, one can write for the partition function for a canonical 

system, 

 S k EBZ e e − =   (31) 

 

This function replaces that for an isolated system, which according to 
Equ. (12), is simply the number of accessible states, 
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 S kBe =  (32) 

 
with the dimension-less statistical entropy BS k counting the number of 

“nats” measuring the size of the state space. 
 

So far, the meaning and value of the parameter   appearing in the 

canonical partition function, have remained hidden. However, for any 
system obeying the Equ. (30), the parameter obeys the relation 

 

 
( ) 1B

B

S k E
or

E S k




 
= =

  
 (33) 

 

It can therefore be evaluated for a system of interest, given specific 

relations between state energies and probabilities. Note that the deriv-

atives in Equ. (33) are partial derivatives testing explicit dependencies, 

to be taken while keeping other coordinates constant.  
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1. Illustrations of partition functions 

 

A detailed evaluation of the partition function is necessary for an in-

terpretation of macroscopic observations in terms of the microscopic 

structure of a system, e.g., in terms of the internal energy spectrum. 

The task can be very demanding for quantal multi-particle systems with 

coupled degrees of freedom and correlated particles, e.g., for fermionic 

systems where the individual particles are indistinguishable and subject 

to the Pauli Exclusion Principle. Particle correlations are important for 

high particle densities in configuration or momentum space but loose 

efficiency at low densities and/or total internal energies. On the other 

hand, many classical d.o.f. such as molecular or nuclear rotations and 

vibrations are independent at low excitations but influence each other 

at higher energies. In the following, a few observations relevant to de-

coupled d.o.f. are made in order to illustrate basic structure of partition 

functions for various d.o.f.  

 

For a system with multiple independent degrees of freedom, for ex-

ample, a molecule with a set (i=translational, rotational, vibrational, 

electronic, nuclear,...), the total number of states   for is the product 

of the corresponding numbers i for the individual d.o.f. Its total energy 

E E=  is the sum over the individual energies ( )i nE E i= . Therefore, 

the total partition function Z is the product of the individual functions Zi 

corresponding to each of the d.o.f., 

 

 ( ) ( ) ( )

i

E in
i

ni

Z Z e



− 

= =   (34) 

 

Here, the energies ( )E in  run over the entire energy spectrum associated 

with the i th d.o.f. In other words, as long as correlations can be ne-

glected (quasi-classical, Boltzmann approximation), the partition func-

tion for such a system can be written as 

 

 trans rot vib electr nuclZ Z Z Z Z Z=          (35) 

 



      

Information/Prob   
W. Udo Schröder 

 

25 

Furthermore, for a quasi-classical N-particle molecular system, 

neglecting correlations, each partial partition function is a product 

of identical single-particle partition functions zi. For example, for 
translational motion in 3D space {x, y, z}, the s.p. partition func-

tion can be approximated by  

 

 

3

, ,

n n nx y ztrans i

n n n ix y z

z e e
   

 

 
−  + +   −  

 
= =  

 
 

   (36) 

 

Here, the s.p. energy scheme of a particle in an infinite cubic 3D 

box of side length a is adopted. Such an infinite box accommo-

dates the unrestricted translational motion of a free particle of 

mass m. For mathematical reasons, one adopts first a finite box 

but lets its dimension grow indefinitely in the final results. 

 

For a finite side length the particle-in-a-box energy eigen values 

are given by a set of integer quantum numbers ni 

 
2

2

28
i i

h
n

ma
 =   (37) 

Performing the transition to the infinite box, a, the summation 

over discrete quantum numbers ni in the partition sum can be re-

placed by an integral over continuous quantum numbers n: 

 

 

3
2 32

28
2

0

2
lim

h
n

trans trans ma
a

a
z z dne m a

h

 




−  

→
→

 
  

= = =        

  (38) 

          

Since the volume is given by V = a3, the translational partition 

function can also be written as 

  

 3 2

3

trans

therm

V
z 



−=   (39) 
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In this expression, therm is the so-called thermal wave length, 

 

 
2

2therm

h

m







=  (40) 

 
With this detail knowledge of the s.p. translational partition function, 

one can now calculate the expectation (mean) value of a particle in a 

canonical system. From Equ. (28) one has 

 

 3 2 3 1

2
n z n 

  

− 
= − = − = 

 
 (41) 

 
In Equ. (41) the fact has been used that there is only one factor in the 

function z() that actually depends on the parameter . Obviously, the 

mean energy of a free particle in a canonical system can, and has been, 

measured to be 

 
3

2 Bk T =    (42) 

In the development of thermodynamics, the mean kinetic energy of a 

free particle has been identified (by convention) with the product of 

Boltzmann constant kB and temperature T. Therefore, one has to iden-

tify,  

 
1

Bk T
 =


 (43) 

 
The heretofore unknown model parameter  has now been linked to ex-

perimental observation. It is an inverse energy which at room temper-

ature T=300K has the value, 

 

 ( ) ( )1 300 300 25 1 40BK k K meV eV − =  = =  (44) 
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2.  Phase space probability distributions and H-Theorem 

 

Systems of N real particles occupy domains in 6N-dimensional phase 

space, rather than cells of a CA. Phase space is a product space de-

scribed by continuous 3N spatial  iq , i 1,...,N=  and 3N momentum 

 ip , i 1,...,N=  coordinates. Therefore, the probabilities pi of discrete 

cells i discussed previously is replaced by continuous, time dependent 

(t) distribution functions ( ) i if q ,p ,t , i 1,...,N=  for the N particles. These 

functions are probability densities normalized to unity when integrated 

over the entire phase space, 

 

                    ( )  3 3
i i id q d f q ,p ,t 1 i 1,...,N =   (45) 

 

Following the same line of arguments as before, the time dependent 

information content of an occupied multi-particle state is contained in 

the Boltzmann H-function (eta-function)  

 

   ( ) ( ) 
N

3 3
i i i i i i

i 1

H(t ) : d q d p f q ,p ,t nf q ,p ,t 0
=

=      (46) 

 

The H function is obviously equivalent to the negative of the information 

S given by the statistical entropy (cf. 

Equ.Error! Reference source not found.). It is negative since the dis-

tribution functions are probability densities.  

 

Based on very general principles, predictions can be made as to the 

spontaneous time evolution of the H function, or the equivalent statisti-

cal entropy function S. In the following, the entropy S(t) is expressed 

as 

 ( ) ( )( ) ( )B n n n

n 1 n 1

S(t ) H(t ) k p t n p t 0 p t 1
 

= =

= − = −     (47) 

 

in terms of time dependent (normalized) probabilities for discrete sys-

tem states numbered by n.  
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This time dependence of the entropy function reflects an underlying 

dynamics, a transport process, which tends to redistribute the im-

portance (or population) of the microscopic states and all of its attrib-

utes. The trend is equivalent to an entropy flux or current  

 

 :s

dS
j

dt
=  (48) 

 

If js has a finite magnitude, it defines a direction of increasing or de-
creasing diversity or spread in a priori probabilities.  

 

 The a priori probabilities pn can be regarded as populations of these 

states which can be queried in experimental observations. If these pop-

ulations are time dependent, there have to be microscopic transition 

probabilities wnm connecting any state n and m. The transition probabil-

ities describe the rate of change in the population of state n due to gain 

and loss from and to state m according to a balance “Master Equation,”  

 

 
( )

( ) ( )n
mn m nm n

m Gain Loss

dp t
w p t w p t

dt

 
 

=  −  
  

  (49) 

 

For microscopic, quantal reasons, the transition probabilities are sym-

metric, wnm = wmn, which ensures time reversal invariance (detailed bal-

ance). Obviously, the Master Equation (49) is a classical approximation 

in that it neglects quantal interference terms involving transition ampli-

tudes, rather than probabilities. 

 

Now, the time derivative of the entropy function in Equ. (47), the 

entropy flux (Equ. (48)), can be calculated: 

 

( )
( )( ) ( )

( )
( )n n

B n n n

n 1 n 1

dp t d np tdS(t ) d
k n p t p t ; p t 0

dt dt dt dt

 

= =

     
= − +        

     
   (50) 

 

Evaluating the derivatives one obtains 

 



      

Information/Prob   
W. Udo Schröder 

 

29 

 

( )
( )( ) ( )

( )
( )

( )
( )( )

( )

n n
B n n

nn 1

n n
B n B

n 1 n

0

dp t dp tdS(t ) 1
k n p t p t

dt dt p t dt

dp t dp tdS(t )
k n p t k

dt dt dt



=



=

=

    
= − + =      

     

 
= − −  

 



 
      (51) 

  

The last term drops out because of the conservation of total probability 

implied by Equ. (50). Now, inserting for dpn/dt the expression given by 
the Master Equation (49), the second row in (51) reads, 

 

 ( ) ( )  ( )( )B mn m n n

n,m 1

dS(t )
k w p t p t n p t

dt



=

= −  −          (52) 

 

Here, use has been made of the symmetry of the transition probabilities 

wmn. Since the two indices n and m run over the same range, this ex-

pression can also be written as, 

 

 ( ) ( )  ( )( )B mn n m m

n,m 1

dS(t )
k w p t p t n p t

dt



=

= − −  (53) 

 
Taking the average of Equs. (52) and (53), a more symmetric expres-

sion is obtained fro the time rate of change of the entropy function: 

 

 ( ) ( )  ( )( ) ( )( )B
mn n m n m

n,m 1

kdS(t )
w p t p t n p t n p t

dt 2



=

 = − −
   (54) 

 

However, since ( ) 0d n p dp , all terms in the sum are non-negative and 

therefore, 

 
s

dS(t ) dH(t )
j 0

dt dt
= = −   (55) 

 

According to this derivation, the entropy S increases and the H func-

tion decreases in time, as long as the transition probabilities are finite, 

0nm mnw w=  . The larger the differences between the populations pi of 

different states are, the higher is the rate of entropy changes. When  
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 .; 1,.....,np const n =   (56) 

 
the S  (or H) functions no longer change. The system described by such 
function has reached its asymptotic stationary state, also known as 

equilibrium state. This equilibrium state is characterized by maxi-
mum entropy corresponding to equal a priori probabilities pn and 

chaotic dynamics. While for a given theoretic model the expectation 
values of the functions S and H can be calculated exactly, there are also 

higher moments (fluctuations) to consider, since they depend on sto-
chastic parameters, the probabilities pn. 
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3. Gibbs stability criterion for random states 

 

The situation of maximum entropy, where all accessible states are 

uniform and have equal a priori probabilities, is called “equilibrium.” It 

will be shown further below how these information/entropy functions 

change in complex dynamical processes.  

 

All systems where accessible states are not uniformly populated 

are in states of disequilibrium and have statistical entropies less 

than the maximum possible: 

The equilibrium state is therefore defined by the variational condition 

 

 ( ) ( ) ( )i i max i i equ i iS q ,p S q ,p : S S q ,p 0= = → =  (57) 

 
Here,  stands for a variation with respect to the individual probability 

densities. Once a multi-particle system is in such an equilibrium state of 

maximum entropy, there is conceptionally no net driving force that 

would force it out of this state in one direction or another. However, 

such an equilibrium state can be either stable or unstable. Microscopi-

cally, there are always quantal fluctuations in all coordinates. Even sys-

tems presumably at rest show “zero-point fluctuations.” In addition, 

physical particles move even classically from phase space cell to phase 

space cell, changing individual occupation probabilities (pi or ( )i if q ,p ,t ) 

instantaneously away from their respective equilibrium values. The 

magnitude of these fluctuations depend on their origin in classical or 

quantum dynamics. They may vary in size and follow a distribution in 

time or frequency (chance of occurrence). Therefore, the actual entropy 

at a given instant will reflect these fluctuations. 

 

Connecting to discussions of stability in previous sections, one can 

obtain a stability criterion by studying the expansion of the entropy S of 

an actual system state about the equilibrium state ( S 0 = ),  

 

 2 2
equ equ

1 1
S S S S .... S S

2 2
  = + + +  +  (58) 
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From this relation it simply follows that the state of maximum entropy 

is stable, only if fluctuations away from this state reduce the entropy, 

 

 2S 0   (59) 

 

This “Gibbs” stability criterion has to be applied in specific cases to iden-

tify the stable equilibrium. Stable equilibrium states are attractors of 

complex system, as will be demonstrated in later sections. 

 

 


