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Monte Carlo Random Sampling 

 

The Monte Carlo random sam-

pling method generates what 

can be called "artificial data" 

of a prescribed form, represent-

ed, e.g., by a functional relation 

y(x) between independent (x) 

and dependent (y) variables. 

The simplest Monte Carlo sim-

ulation method is called the Re-

jection Method. It is used in 

applications with normally distributed data sets in the MATHCAD 

code MonteCarlo.mcd. The method is very useful in the numerical 

evaluation of multi-dimensional integrals of possibly complicated 

functions of several variables, which may not have analytical prim-

itive functions.  

 

In the following, this method is illustrated with the simple case of a 

numerical integration of a function f(x) of one variable x over the 

interval [a, b]. As shown in the sketch, one draws a graph of the 

function f(x) and encloses that part of the function to be integrated 

within a (not necessarily, but preferably the smallest) rectangle of 

area A, in the example A = h·(b - a). Then, a large number of pairs 

of real numbers {xi, yi} are chosen randomly within the area A. 

Each pair {xi, yi} is tested as to whether or not yi ≤ f(xi),  i.e., 

whether or not the point {xi, yi} lies within the area below the curve 

f(x) (see figure above). If this is the case, the point is accepted for 

calculating the integral dx f x
a

bz ( ) ,            otherwise, the point is  
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rejected. Counting the number Nacc of accepted points out of the to-

tal number Ntot of random points drawn, one has a measure of the 

integral, since the area under the curve scales to the total area like 

the ratio Nacc /Ntot   

 

                     dx f x
N

N
Aacc

tota

b

( ) = z                                 (1) 

 

This is a plausible example of the general Monte Carlo integration 

rule 

 

                           dx f x f b a b a
a

b

fz  −  −( ) b g b g   (2) 

 

with the statistical error involving the standard deviation  
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f f
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               (3) 

 

The averages and errors (see also: Moments.doc) are defined with 

respect to the functional values at the x coordinates of the N sam-

pling points {xi, yi}: 
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The ≈ term in Equ. 2 with the standard deviation of Equ. 3 repre-

sents only an error estimate for the value of the integral obtained 

with N points. For a more accurate error determination of the Mon-
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te Carlo integration method, books on numerical analysis should be 

consulted. 

 

It is straight-forward to check the consistency of the example with 

the general method defined in Equ. 2. Realizing that, for the exam-

ple, <f> = h· (Nacc /Ntot), and inserting this into Equ. 2, one obtains 

the earlier result of Equ.1. At the same time, it is obvious from 

Equ. 2 that 

 

                                   f x f x f( ) ( )    (5) 

with  

                     f x
N x

N x
hacc

tot

( )
( )

( )
=                (6) 

 

Here, the sampling is done at a particular abscissa value x, i.e., the 

set {(xi, yi)| xi = x} is chosen and the number Nacc of acceptable 

points is counted out of a total of Ntot draws. Then, the number of 

accepted points is proportional to the average of the function f at 

the argument x, namely 

 

              N x f x
N x

h
acc

tot( ) ( )
( )

=       (7) 

 

It is approximately equal to the actual value of the function f at ar-

gument x, 

 

                  N x f x
N x

h

N x

h
acc

tot
f

tot( ) ( )
( ) ( )

=                (8) 

 

where the second term indicates again the estimated uncertainty.  
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It follows from the above discussion that randomly chosen pairs 

{xi, yi} with  yi = f(xi) have a probability distribution given by the 

function f(x),   

 

               P x
N x

N x
f xacc

tot

( )
( )

( )
( )=                                  (9) 

 

For example, there are many pairs with x-values where the magni-

tude of f is large, and very few pairs represent the function where it 

is small. It also does not matter, in which sequence the various ar-

guments x are sampled. So, normally the pairs {xi, yi} are chosen at 

random with respect to both x and  y. Since P(x) is given by the 

fraction of the total number of points drawn, it is already properly 

normalized to unity. This is the essence of Monte Carlo random 

sampling.  

 

The principle is applied to a normal (Gaussian distributed) sample 

of x values with an average value of <x> = x0= 50 and a standard 

deviation of x = 5. The two figures above represent the same 

Gaussian distribution, on the left a very small sample of only 100 

events in 30 bins about the average, and on the right 1000 events 
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over the same range of x values. In either figure, the frequency 

P(x) of finding the value x in the sample of accepted points (cf. 

Equ. 9) is plotted vs. x. It is obvious that a small sample gives only 

a rough idea of the general shape of the function to be simulated 

numerically, here a Gaussian, with significant statistical errors. 

Increasing the sample size by a factor 10, to 1000, leads to a much 

more accurate representation, as illustrated by the figure on the 

right. 

 

The rejection method discussed above is 

universally applicable. However, depend-

ing on the functional relationship to be 

simulated, a large fraction of the random-

ly drawn pairs {xi, yi} may be rejected 

and, hence, useless. If this is the case, the 

method is not very effective and the com-

puting time needed to generate a large 

statistical sample may become very long. In special cases, the al-

ternative Transformation Method may be faster. This latter meth-

od makes use of the bunching effected by an appropriate reflection 

of a randomly distributed set {xi} of x values at a function f(x). As 

illustrated in the sketch, if the x-values are uniformly distributed, 

the values  y = f(x) are compressed, as given by the slope dy/dx. 

The smaller this slope, the stronger the bunching of the corre-

sponding y-values: 

 

       dy f x dx=  b g              (10) 

 

where f ' is the derivative of f. If the x-values are random, i.e., 

P(x)= const., then the y-values are distributed according to 

f(x)

xdx

dy
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                             P y P x
dy

dx
f x( ) ( ) ( )= 

F
HG
I
KJ  

−
−

1
1b g             (11) 

 

In other words, according to Equ. 11, choosing a random sample 

{xi}, the values of the set {yi= f(xi)} simulate the function (f '(x))-1.  

 

Suppose that one wishes to simulate a probability distribution P(x) 

= f(x) instead of (f '(x))-1. If it is possible to obtain a function g(x), 

such that 

   

       (g '(x))-1 = f(x)               (12) 

 

i.e., if it is possible to find the primitive function (integral) of 

[f(x)]-1, 

                      g x dx
f x

x

( )
( )

= 
z 1

            (13) 

 

then the set {yi =g(xi)} built upon the random set {xi} has the de-

sired probability distribution P(x) = f(x). 

 

Consider the example of a hyperbolical probability distribution  

 

                      P x f x
a

b x
( ) ( )= =

+
  (14) 

 

to be simulated. Obviously, the inverse of this function can easily 

be integrated, yielding 
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        g x dx
b x

a

b

a
x

a
x

x

( ) =
+L
NM
O
QP = +z 1 2

                       (15) 

 

Now, choose a random set {xi} which can be done with the code 

MonteCarlo.mcd  and construct the 

set {yi =g(xi)}, also done in this 

code for the above example. The 

resulting frequency distribution 

{yi} is plotted as open circles 

{yrdm} in the figure. The analytical 

function f(x) defined in Equ. 14 is 

indicated by the dashed curve (fN). 

Obviously, the random points out-

line the function well, but show a 

statistical scatter given by the number of events drawn.  

 

 

 

Brief discussions of Monte Carlo Methods can be found in 

 

R.H. Landau and M.J. Paez, Computational Physics, Wiley Inter-

science, New York, 1997 

 

N. J. Giordano, Computational Physics, Prentice Hall, Upper Sad-

dle River, 1997 
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