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Fundamentals of Classical Mechanics:  
                                                     From Newton to Hamilton 

 

1. Newtonian Mechanics 

 
 

All model solutions of mechanical problems require knowledge 
of forces, or potentials, and inertias to describe accurately the tra-
jectory of a body from a given initial condition in position and mo-
mentum. Newton’s elementary formulation is the simplest of sev-
eral, but only for very simple situations. More complex dynamics 
can be described more adequately in terms of Lagrangian or Ham-
iltonian mechanics. 

 
In Newton’s approach, the motion of a particle of mass (inertia) 

m along a degree of freedom x, subjected to a potential V(x), is 
described in terms of an Equation of Motion relating the parti-
cle’s momentum p to the gradient of the potential  
                           
                           Fx = - {grad V(x)}x = V / x −        (1) 

according to 
  
                                        

x x
p F V x = = −  (2) 

  
Here, V x  denotes the partial derivative of V with respect to 

the variable x, keeping all its other variables fixed. The dot 
over a quantity denotes the derivative with respect to time t, two 
dots mean the second derivative with respect to time. 
 

In three spatial dimensions, with a position vector r = (x,y,z) 
expressed in terms of Cartesian coordinates x, y, and z, this is 
generalized to: 

 

       
x y z

V V V
F grad V(r ) V(r ) u u u

x y z

  

  

 
= − = − = − + + 

 
       (3) 
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where the 
i

u  (i=x,y,z) are unit vectors in the respective directions. 

(We write vectors here as “row” vectors, i.e., triplets of numbers 
in a row, simply because the format fits a written text better. The 

notation of column vectors 

x

r y

z

 
 

=  
 
 

is completely equivalent, but 

takes more space in print.) The operator   is called “del” or “na-

bla”. The equation 
 

 p F gradV(r )= = −  (4) 

 
then results as the fundamental equation (EOM) of Newto-
nian Mechanics. 
 

This equation will be illustrated for the simple case of a Har-
monic Oscillator representing, e.g., a vibrating atom in a lin-

ear molecule (bond stretching mode). For simplicity, one replaces 
the atoms on the left and right by rigid walls, such as shown in the 
sketch. Furthermore, only small oscillations about the equilibrium 
position x = 0 are to be considered. Then, the restoring force in x-
direction is approximately linear and given by  

Hooke’s Law 
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                 F = - k·x                
(5) 
 
Here, k > 0 is the restoring-force 
constant, and the sign of F indi-
cates the direction of its action. The 
associated potential is given by 
 

       V(x) = (1/2)k x2         

(6) 
 

It is easy to verify that the negative 
gradient of this potential is indeed 
equal to Hooke’s force. 
 
With the momentum of the vibrat-
ing atom given by p = m x   the 

equation of motion reads: 
 
  dp/dt = F = − kx or  mx = − kx             (7) 

 
These equations have the oscillatory solutions 
 
      x(t) = x(t=0) e  it        (8) 

 
with an amplitude x(t=0) and a phase factor e  it depending 

on the circular frequency 
 

        = 2   = k / m .      (9)   

 
This frequency is related to the period of the oscillatory motion T 
by  = 2   The larger Hooke’s constant and the smaller the 

mass, the higher is the frequency of vibration of the atom, as ex-
pected. 
 

In Equ. (8), the quantity i = i / 21 e − =  is the imaginary unit, 

and x(t=0) denotes the deviation from equilibrium at time t = 0. 
The position of the atom is, of course, a real number and not 

 

 

V(x) 

Molecular Vibration 

       x 

Molecular Vibration 

x=0, equil. 

V(x) 
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complex as suggested by Equ. (8). This equation is, therefore, to 
be interpreted as a short-hand notation of the real solution. Since 
the differential equation (7) does not couple (mix) real and imag-
inary parts of the solution x(t), both the real and imaginary parts, 

Re(x) and Im(x), respectively, are independent solutions of the 

problem.  
 

For the temporal variation of the momentum, one obtains from 
differentiation of x(t) in similar short-hand notation 
 
    p(t) = mx (t) = -i(m ) x(t=0) e - it 

 
       = (m ) x(t=0) e - i(t + /2)                     

(10) 
 
       = (m ) x(t+T/4) 

 
where the ‘-‘ sign has been chosen to represent a particular phys-
ical solution. The last step in (10) comes about since t+/2 = t + 

T/4.  Together, x(t) and p(t) describe the harmonic oscillation of 
the vibrating atom. More accurately, both sets  
 

[Re{x(t)}, Re{p(t)}]  and  [Im{x(t)}, Im{p(t)}] 

 
describe the vibration, each represents a different valid solution. 
The quantities x(t=0) and p(t=0) are the initial conditions prevail-
ing at t = 0. They determine the still open parameters x(0) and 
p(0). The boundary conditions at t = 0 may be chosen such that 
x(t) has a maximum, xmax , with p(t=0) = 0. But it could be any 
other possible initial condition.  
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On the other hand, the momentum p(t) has its maximum mag-

nitude (absolute value p p= ), pmax, at t=T/4, where x is zero. 

Position and momentum of the atom are hence seen to oscillate 
with the same frequency  between their maximum positive and 

negative values, but with a phase dif-
ference of  =  /2 = 90o. That is, if x(t) 

is a sin-function, then p(t)is a cos-func-
tion, and vice versa.  
 

Hence, the “normalized” system tra-
jectory {x(t)/xmax ,p(t)/pmax} prescribes 
a unit circle in phase space {x, p}. If 
the oscillation were damped, the trajec-
tory would be a spiral ending in the 
origin {x = 0, p = 0}. 

 
The equations of motion for the above dynamical systems are 

examples of analytically solvable problems. Unfortunately, most 
dynamical problems of practical interest are not solvable analyti-
cally. Then, numerical methods of solution have to be employed. 
As a simple example, consider the motion of N identical particles 
of mass m in our regular 3-dimensional space. The positions of 

these particles are given by the position vectors  i i i i
r x ,y ,z ,= , their 

velocity (vectors) by  

       i
i i i i i

dr
v r x ,y ,z ,

dt
= = =            (11)  

 
and their acceleration (vectors) by 
  

     i
i i i i i

dv
a r x ,y ,z ,

dt
= = =            (12)  

 

Using Newton’s equation (3) with the forces
i i

F (r )acting on the par-

ticles, one obtains 
 

   i i
i i

dp dv
m F (r )

dt dt
= =                     (13) 

 t

 p

 x  t

 Motion of Harmonic Oscillator

         in the Phase Plane
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These are second-order differential equations for the coor-

dinates  i i i i
r x ,y ,z ,= but first order in the velocities. In actual nu-

merical calculations, sets of two first-order differential equa-
tions (11) and (12) are solved by linearization or some other 
simple approximation. The total considered time interval is divided 
into finite steps of width t, chosen small enough to warrant a 

first-order Taylor expansion of the velocities, such that tra-
jectories are constructed by iteration. For the x-coordinates and 
x-components of the velocities of one particular particle, the 
actually used equations of motion can be written as 
 

  
( )

( )

2

n 1 n n n

n 1 n n 1 n

1
x x v t a t

2

1
v v a a t

2

+

+ +

= +  + 

= + + 

                   (14) 

 
Here, the x-components of the accelerations are defined by the 

corresponding components of the force acting on the particle at its 
position at the nth step of the iteration,

n
r ,  

 

( )x n

n

F r
a

m
=                     (15) 

 
Similar equations can be set up for the other coordinates, yn and 
zn, of the particle considered. All equations have to be integrated 
simultaneously, step by step, to yield the particle’s trajectory. The 
other particles have to be treated in a similar manner. 
 
 
 

2.  Lagrangian Approach 

 
In the Lagrangian Approach, one derives the equation of mo-

tion from the Lagrangian  
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      L = T - V              
(16)  
 
where T is the kinetic energy and V the potential energy of the 
mechanical system. In the following, only an illustration of the 
equivalence of the Lagrangian and Newtonian methods will be 
given for the simple case of a point-like particle, since the general 
derivation of the Lagrangian equations of motion is somewhat 
lengthy. It can be found in texts on classical mechanics, for exam-
ple in F. Scheck. 
 

For this illustration, one starts with the Newton equation (cf. 

Equ.(2)) 
 
        p F V x = = −                               (17) 

 
in one degree of freedom, x. This equation, a mixed second-or-
der differential equation is somewhat asymmetric. The left-
hand side is proportional to the second derivative of one function 
(x with respect to the time t), while the right-hand side is the neg-
ative first derivative of another function (V with respect to x). 
One can, however, simplify and symmetrize the equation some-
what by realizing that p can be written as a derivative of the kinetic 

energy ( )2 2T p / 2m m 2 x= = , 

 

     
T

p
x




=        and  

d T
p

dt x




=           (18) 

 
 

If the potential V is only dependent on the position x and not 
dependent on the velocity, as is true for many conservative sys-
tems, then V x 0  = . In this case, one can replace the kinetic 

energy T in Eq.II.11 by the Lagrangian L= T - V, i.e., 
  

            p = 
T L

x x

 

 
=             (19) 
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The variable p L x =  is called a generalized or canonical mo-

mentum. In many cases, e.g., for conservative systems of rigid 
bodies, the generalized momentum is equal to the momentum as 
it is usually defined. Such canonical variables are used in the Ham-
ilton formulation discussed further below. 
 

In addition, usually the kinetic energy T does not explicitly de-
pend on the position x, but only on p (orx ). It only depends im-
plicitly on x, i.e., it changes with x only because the momentum 
p may depend on x through the x-dependence of the potential. 
Then, 
  

       
V L

x x

 

 
= −             (20)  

          
and, from Newton’s equation, 
 

        
d L L

p F
dt x x

 

 
= = =             (21)  

 
Equ. (21) is equivalent to the Lagrange Equation 

             

         
x

d
L 0

dt x

 


•

 
 
 
  

− =  (22) 

 
which is completely equivalent to the Newton equation (7). The 
Lagrange equation is a second-order differential equation for 
one function (L). For a system with n degrees of freedom, there 
are n differential equations of the form of Equ. (22), one for each 
degree of freedom.  
 

Both Newton and Lagrangian equations show some symmetries 
of the problem in equally simple fashion. For example, if L and, 
hence, V do not depend on a particular variable x, it follows that 
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d

L 0
dt x




=     and 

x
p L constant

x




= =   (23)  

 
Then, for such a cyclic variable x, the associated (generalized) 
momentum is conserved, i.e., is a constant of motion. A trivial 
example is represented by the one-dimensional oscillator treated 
earlier. Its equations of motion contain only x and variables asso-
ciated with x. Therefore, the other spatial coordinates y and z are 
cyclic, and the momenta in those directions are constants (always 
 0). 

 
• The Lagrange equations have one very important advantage 

over the Newton equations: The former are invariant under co-

ordinate transformation x  , i.e., they look similar when ex-

pressed in either variable x or . For example, this allows one 

to write down the Lagrange equations for a complex molecule 
in terms of the so-called normal modes of the molecule, rather 
than in the separate coordinates of the constituent atoms. 

 

           
d

L 0
dt

 

   

 
− = 

 
           (24) 

 
 
How to actually use the Lagrange equations to derive the time-

dependence of the position and momentum variables of a system 
will be illustrated in a simple example of molecular bending-mode 
vibrations. 

 
Consider the di-atomic molecule 

(perhaps a sub-cluster of a larger 

molecule) pictured in the sketch. 
The atoms of masses m1 and m2,(= 
m1 = m, for simplicity), are placed 
in the t-dependent geometry of an 
equilateral triangle of fixed side 
length l, where they can pivot 
about the point at the top of that 

triangle, changing the distance x between the two atoms. If the 

 

 l 
q  q 

 l 

 xi 

 m1  m2 

Molecular Bending Vibration 

pivot point 

0 
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atom-atom interaction is of a van der Waals (Lenard-Jones) type, 
then there is an equilibrium distance x = x0 between the two at-
oms, i.e., there is attraction for larger and repulsion for smaller 
distances.  
 

Assume for simplicity then an approximate linear force law,  
 
               F = -k(x - x0)                           (25) 

 
with a restoring-force constant k > 0. This problem is really one of 
rotational motion of the atoms at a fixed radius r = l about the 
pivot point, with the only degree of freedom being the bond angle 
2q. Then, the problem is solved easiest when expressed in that 

coordinate. First, the force is written in terms of q and for small 

deviations about the equilibrium: 
 
          F = - kl2 (q − q)  

              (26) 

 
with an equilibrium bond angle of 2q = 2q . This force corresponds 

to the potential  
 
     V( q ) = V( q 0) + kl(q − q)      (27) 

 
without loss of generality, one can set V( q 0 )= 0 in the following 

calculation. 
 

The kinetic energy of rotation is calculated from the relative ve-

locity vq = 2lq  of the atoms and their reduced mass  

 
     = m1m2/ (m1 + m2) = m/2              (28) 

 

    T = 2v
2

q


 = 2 l2q 2       

(29) 
 
such that the Lagrangian can be written as 
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   L = T - V = 2  l2q 2 - kl(q − q)      (30) 

 
From direct differentiation of this Langrangian, the canonical mo-
mentum and its time derivative are obtained as  
 

   2 2L d L
4 l and 4 l

d t

 
 q  q

 q  q
= =   (31) 

 
while the generalized force is calculated as 
 

        
0

L V
2kl ( )

 
q q

 q  q
= − = −  −     (32) 

 
Equating the above last two formulas, one obtains finally the equa-
tion of motion for the (half) bond angle: 
 

       
0

k
( )

2 l
q q q


= −  −


     (33) 

 

since q is a constant, and one can subtract 0
q  on the left-hand 

side and obtains a differential equation for the variable 0
q q q= − . 

It has, obviously, oscillatory solutions of the form 
 

         [q(t) − q =   i t

0
(0) e q q −       (34) 

 

with the circular frequency of ( )k 2 l = . 
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3. Hamiltonian Formulation of Mechanics 

 
The Lagrange equation is a 2nd order differential equation, 

which is sometimes difficult to solve. However, it can be trans-
formed into a set of two 1st-order differential equations, the 
Hamilton equations, which are much easier to integrate. The 
Hamilton formalism starts from the Hamiltonian 

 
                         (35) 
 
 

which gives the functional dependence of the total energy on all 
coordinates { qi } and momenta { pi }, where i runs over all de-
grees of freedom, {qi= x,y,z} and {pi= px,py,pz}. Here, the gen-
eralized coordinates and momenta 

i
p L q =  are used, as de-

fined above. L = T - V is the Lagrangian. Since the product of 
momentum and velocity equals twice the kinetic energy, one can 
express the Hamiltonian in these terms: 
 
             i i

i

H p q L=  −             (36)  

 
The equations of motion are derived from a comparison of all 

differentials of H ({ qi }, { pi }, t ) with those of the Lagrangian. 
The total differential of L({ qi }, { 

i
q }, t ) is, by definition, written 

as 
 

           

( )

i i
i i i

i i i i
i

L L L
dL d t d q d q

t q q

L
d t p d q p d q

t

  

  





 
=  +  +  = 

 

=  +  + 





              (37) 

 
The second term in the bracket on the second line can be written 
as 
 
    

i i i i i i
p d q d(p q ) q dp = −      (38) 

 

 
H = T + V = 2T - L 
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and one can reorder terms in Equ. (38) to obtain 
 

              ( )i i i i i i
i i

L
d( p q L) d t p d q q dp

t




 − = −  −  −             (39) 

 
According to Equ. (36), the left-hand side of this equation repre-
sents the total differential of H. On the other hand, this differ-
ential is, by definition, given by 
 

              
i i

i i i

H H H
dH d t d q d p

t q p

  

  

 
=  +  +  

 
              

(40) 
 
Since all variables are independent of each other, one can com-
pare the partial differentials in Equs. (39) and (40), term by term, 
i.e., set the corresponding terms equal. One then obtains      
    

Hamilton’s Canonical Equations 

     

 

i i

i i

H L H H
q p

t t p q

   

   
= − = =−

 

  (41) 
  

These equations are rather symmetric in the variables qi and pi, 
except for the minus sign in the third equation. This sign is due to 
the fact that the force is given by the negative gradient of the 
potential V. 

 
One simple consequence of Hamilton’s equations can be drawn 

almost right away already from Equ.(40): If H does not depend 
explicitly on time, i.e., if the partial t-derivative is zero ( H t 0  =

), then the total energy is conserved (dH dt 0= ). The total en-

ergy is a constant of motion. This is the case, for example, when 
a system moves under the influence of static (interaction) poten-
tials. The condition is not fulfilled in cases, where the interaction 
energy is t-dependent, for example, if a molecule is irradiated with 
a laser (t-dependent electromagnetic radiation). 



 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

Mechanics                W. U. Schröder 

 

14 

 
In order to solve a mechanical problem using the Hamilton for-

malism, one goes through the following procedure:  
 
First one has to construct the functions for the kinetic and the 

potential energy, using the normal coordinates and mo-
menta.  

 
From these functions, one builds the Lagrangian L = T - V and 

the Hamiltonian H = T + V and calculates the canonical mo-
menta. This latter step is only then necessary when coordi-
nates and/or momenta appear mixed in kinetic and/or po-

tential terms. Otherwise, normal and canonical momenta are 
identical. 

 
 

• Then, one calculates the Hamiltonian partial derivatives in 
Equ. (41). These then will provide the equations of motion, 
as given by Equ.(41). 

 
The Hamiltonian, more specifically, its dependence on all 
coordinates and momenta, contains the complete infor-
mation on a classical system. This pertains in particular to 
all observables A that describe a classical system, e.g., a 
system of N particles. 
 

At every time, a particle (1) occupies a point in 3D configuration 

space,  r x,y,z= , and one point in 3D 

momentum space,  x y z
p p ,p ,p= . This can 

be thought of as the 6 coordinates of the 

particle in phase space,  p,r . Two parti-

cles (1 and 2) have then 6 · N= 12 coordi-
nates. The configuration of two particles 
could then either be characterized by two 
points in a 6D phase space or one point in 
a 6 · N (for two particles:= 12) -D phase 

space. The latter choice turns out to be more convenient, even 
though it is difficult to represent graphically. Conventionally, one 

px 

x 

1 

2 
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numbers the spatial and momentum coordinates of all particles in 
a sequential fashion such that {pi(t), qi(t); i=1,..., 3N} describes 
the configuration of the N-particle system at time t. This set of 
time-dependent 6N-tuples of coordinates is called the system’s 
phase space trajectory. 

 
For such a system of N particles, there are a number of observ-

ables A of interest, e.g., the total energy E, the position of its cen-
ter of gravity, {X,Y,Z}, the total momentum, the summed average 
values, as well as the spread, etc. As the system evolves in time, 
so do the values of the observables A = A(t). The observable can 
have an explicit time dependence. Then, 

 

 
A

0
t





 (42) 

  
But even if there is no explicit t-dependence of A, its value may 
change, simply because the system coordinates change. Then, A 
has an implicit t-dependence. The total temporal rate of change 
of A has therefore the following representation: 
   

 

3N
i i

i 1 i i

3N

i i
i 1 i i

q pdA A A A

dt t q t p t

A A A
q p

t q p

=

• •

=

    
= + + = 

     

   
= + + 

   





 (43) 

 
Inserting Hamilton’s equations for the time derivatives of coordi-
nates pi and qi,, one obtains the following expression for the time 
rate of change of observable A: 
 

 
3N

i 1 i i i i

dA A A H A H

dt t q p p q=

     
= + − 

     
  (44) 

 
This expression is written usually in short-hand notation, using the 
Poisson brackets [A,H] 
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  
dA A

A,H
dt t


= +


 (45) 

 
 which are defined by the two Equs. (44) and (45). 

This rather compact formulation of the time dependence of an 
observable A demonstrates that in fact the complete information 
of a classical system of N particles is contained in the system Ham-
ilton function, which in turn defines the t-dependent phase space 
trajectories. 

 
An important application of the above formalism concerns the 

time dependence of the phase space density . This is the number 

of states dN accessible to the system per phase space volume  
 

        d = dp·dq      (46) 

 
i.e., 

 
dN

d
 =


 (47) 

 
In time, all states evolve, for example diverge or converge in phase 
space, and generally define a new occupied phase space element 
d’. Each point within the new element d’ is connected to the old 
element d by its own trajectory. Hence, the old element is 

mapped onto the new element by the corresponding system tra-
jectories. This means that 
 

  ( )i i
(t ) H p (t ),q (t ) =  (48) 

 
is a function of the coordinates and momenta, via the Hamilton 
function H. Therefore, the phase space density  is an example of 

a function A. Therefore, application of formula (45) yields 
 

  
d

,H
dt t

 



= +


 (49) 
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For a conservative system, there is no explicit time dependence of 
, since there are no phase points created or lost, t 0  = . Fur-

thermore, one can easily show (homework) that the Poisson brack-
ets for a function of the type of Equ. (48) vanishes also such that 
one has the famous Liouville Equation 
  

  
d

,H 0
dt t

 



= + =


 (50) 

 
implying that the phase space density is constant for a conserva-
tive system. Such a statement could not be made for a dissipa-
tive system, where frictional forces would lead to a shrinking of 
the phase space volume occupied by a system. 

 
 

4. Is Classical Mechanics Deterministic ? 
 

Together with initial conditions, the equations of motion dis-
cussed above evolve the system according to a well defined 
method. However, this does not necessarily imply that the system 
trajectories are completely predictable. As seen in the first section, 
chaotic motion can result under various, not always obvious con-

ditions. Often, such 
modes are artificially 
suppressed in theoret-
ical treatments using 
simplified models.  
 

For example, often 
the interaction poten-

tial between two at-
oms or molecules is 
approximated as that 
of a harmonic oscilla-
tor. The correspond-
ing force is then re-
placed by an approxi-
mate force that is 
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linear in the displacement (Hooke’s Law (5)). The resulting vibra-
tion would then be a perfectly periodic oscillation.  bendingvibes 

The phase diagram  max max
r r ,r r  of the vibration would then be a 

perfect circle. However, the potential is not harmonic. The plot 
shows a typical form of the interaction potential given by the Len-
nard-Jones shape for a system of two interacting Ar atoms, 
 

 

12 6

V(r ) 4
r r

 


    
=  −    

     

 (51) 

 
with a strength parameter, given relative to the Boltzmann con-
stant as  /kB = 120 K, and a range parameter of  = 341 pm 

[1pm=110-12m]. Since the potential is not strictly quadratic, sym-

metric about the equilibrium point, the restoring force is not ex-
actly linear in the displacement of the oscillator from its equilibrium 
position, except for very small displacements and energies close 
to the ground state of the diatomic Ar-Ar system. For small ampli-
tudes, one obtains circular phase space orbits from direct integra-

tion of the EOM of the bending mode. 
BendingVibes 
 
 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/Chm455_2003/ILSN/assets/video/Bend_Vibs.avi
file:///D:/My%20Webs/Chm%20252_455%20Statistical/Chm455_2003/ILSN/assets/video/Bend_Vibs.avi
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In addition, the EOM of the Ar-Ar system could be more complex 
than the proportionality between conservative force and accelera-
tion implied by Hooke’s Law. There could be other influences work-
ing on the system due to the environment, for example friction at 
the neighboring molecules or external electromagnetic fields. Fric-
tion leads to a spiraling phase space orbit such as shown in the 
figure. 

 
Of interest is the response of a realistic damped vibrator to ex-

ternal excitations, such as exerted by weak or strong electromag-

netic fields (optical excitations by laser). Here, one obtains a vari-
ety of responses, depending on the relations between conserva-
tive, dissipative, and external driving forces. One observes do-
mains with completely orderly motion and others where the bend-
ing vibrations show an unexpected, chaotic nature (BendingVibes-
Chaotic). This latter type shows a motion with one or two attrac-
tors in phase space. 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/Chm455_2003/ILSN/assets/video/Bend_Vibs_caos.avi
file:///D:/My%20Webs/Chm%20252_455%20Statistical/Chm455_2003/ILSN/assets/video/Bend_Vibs_caos.avi


 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

Mechanics                W. U. Schröder 

 

20 

 
 

 
Random, chaotic motion in an ensemble of many particles can 

be induced by different effects. If, 
a particle is enclosed within a con-
tainer with irregularly shaped 
walls, elastic scattering of the par-
ticle off the container walls can in 
effect also induce random motion. 
This randomness is to be under-
stood in the sense that the parti-
cle trajectory will, in time visit 
every position in the available 
space (ergodic behavior). Such 
irregularities of the walls are in 
practice always present. In fact, 
orderly motion, such as repre-
sented by periodic closed orbits 
have to be considered an excep-
tion to the rule. Such orbits only 
develop for containers with partic-

ular symmetries. The sketch shows the orderly, periodic motion 
that can result for a particle enclosed in a rectangular vessel with 

Periodic and Chaotic Motion

Induced by Scattering
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perfect walls. If the geometry of the vessel is changed into that of 
a stadium, the orbits are no longer periodic and become chaotic, 
even for perfect container walls. Calculating the density of trajec-
tories over a certain area (or volume) element, one finds a con-
stant coverage, given an infinitely long time.  

 

 


