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I. Emerging Complexity, Order and Chaos  
 

This introductory section to the Statistical Theory course is 
meant to illustrate scientific insights that appear to contradict our 
daily experience of macroscopic objects and dynamical 
processes. We understand the simple trajectories of tennis balls 
or of planetary motion due to a simple force, gravitation, the 
general attraction of massive bodies towards each other. On the 
other hand, one suspects that the rules that govern the growth 
and replication of organisms, of polymerization of organic mole-
cules, or of the birth and demise of entire galaxies, are very 
complex. Simple rules should lead only to simple structure and 
simple, predictable behavior. Intricate structure and processes, 
so it seems, are caused by complex underlying rules, possibly by 
the cooperation or competition of many different laws. It is not 
immediately obvious, if and how these two regimes of (minimal 
and maximal) complexity are related to each other, but related 
they are.  

Progress made by science in recent years, studying behavior 
and evolutionary adaptation to environment by simple and com-
plex systems, has demonstrated that there is really no funda-
mental difference between systems that behave orderly, in a 
predictable fashion, and chaotic systems, which evolve in an en-
tirely unpredictable fashion. Neither is it true that simple laws 
cannot lead to complex behavior or intricate structure. In fact, as 
it turns out, the only plausible way to produce complexity in na-
ture is through progressive evolution in time of initially very sim-
ple systems governed by very simple natural laws.  

The following sections illustrate a few examples of transitions 
from order to chaos and back in dynamic systems that can be 
modeled by simple mathematics. It is also shown how complexity 
can emerge from simple underlying rules or laws of replication 
which through selectivity can become adaptive.  
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1.  General Considerations 
 

The roots of modern science go back to the 17th and 18th 
centuries, initiating a period of Enlightenment, where previous 
dogmas were reviewed in the light of experimental knowledge 
and critical rationality. This period had a profound impact on the 
view of Nature held by the inhabitants of Western Culture and 
their organization of society. The success of the new mechanistic 
science suggested that the whole universe was in well-ordered, 
causal motion governed by quantitative and relatively simple, 
knowable physical laws. 

 
Newton was one of the impor-

tant architects of the new 
science. Newtonian physics says 
that future mechanical motion is 
accurately predictable from the 
presence, if the acting forces and 
inertias associated with a system 
are precisely known. Any uncer-
tainties are then entirely due to a 
lack of knowledge, for example, 
about the system’s initial condi-

tions. Taking a relatively narrow view of the physical regularities 
of mechanical motion, discovered in the 17th century, led to the 
picture of the universe as a giant clockwork of wheels and gears. 
Well-known illustrations are mechanical models of the planetary 
system used for demonstration purposes. 

Figure 1: Isaac Newton 

 
Such a simple mechanical model of 

the universe never works perfectly. It 
requires frequent resetting and syn-
chronization with the actual motion of 
the planets. The inadequacy of Newto-
nian mechanics for a description of the 
planetary system was noted first in the 
19th century by Henrie Poincaré. He 
described the impossibility to solve ac-
curately the simple 3-body problem, Figure 2: Henrie Poincaré 
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e.g., the motion of a small satellite around a heavy planet and a 
massive star (see simulation). He found an unexpected, very 
high sensitivity of the satellite’s trajectory to initial condi-
tions, represented by the positions and velocities of the interact-
ing masses. Small changes in these conditions led to dramatically 
different trajectories. The trajectories themselves were not at all 
orderly. They did not correspond to periodic motion on a stable 
orbit. Many trajectories were highly irregular or “chaotic”. To 
find stable, orderly orbits in a system of 3 or more bodies has 
remained a challenge to modern science still to date. Chaotic 
motion has now also been definitively identified in our planetary 
system, examples are the trajectories of various moons of Jupi-
ter. 

 C oupled Pendulum

 
Figure 3: Coupled pen-
dulum capable of 
chaotic motion  Lorenz’ Convective Roll 

 
Figure 4: Convective 
currents in a beaker on 
a hotplate. 

While it is not so easy to demonstrate 
actual planetary motion, chaotic behavior 
can be observed with many relatively sim-
ple mechanical systems. One example is a 
magnetic pendulum swinging erratically in 
the field of several other magnets. Another 
example is a coupled pendulum kicked 
periodically by a magnet in the base of its 
stand. One expects that, after a few initial 
forced oscillations, the motion of the 
coupled pendulum would settle to be a 
completely predictable motion about some 
equilibrium point in space. This is actually 
not the case, since the smaller pendulum 
sometimes moves in a synchronized fa-
shion with the driving pendulum but can 
suddenly undergo an erratic back-and-forth 
motion.  

 
Such behavior is now understood to re-

sult already for 1D motion, if it is governed 
by a non-linear force, a force that does not 
increase in proportion to displacement from 
the equilibrium point. Chaotic behavior can 
also be expected for motion along several 
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degrees of freedom, when there is a strong feed-back mechan-
ism coupling the different degrees of freedom. This latter situa-
tion applies to the above coupled pendulum (Fig.3). It also ap-
plies to the case of a beaker filled with liquid on a hot plate, in 
which the temperature difference from bottom to top drives a 
“convective roll”, which tends to change just this gradient. This 
situation has been studied by Edward Lorenz in 1963, who tried 
to understand the atmospheric flows determining the weather 
and discovered the phenomenon of chaos instead. He set up the 
following coupled differential equations for the velocity (x) of ro-

tation of the flow, the temperature 
difference (y) between ascending and 
descending currents, and the devia-
tion (z) of the vertical temperature 
profile from a linear law: 

 

= ⋅ − = ⋅ − − ⋅
dx dy

a (y x) r x y x z
dt dt

= − ⋅ + ⋅
dz

b z x y
dt

    (1) 

 
where a, b, and r, are non-negative 
constants and t is the time. The 

coordinate triplet {x(t), y(t),z(t)} then indicates a time depen-
dent system trajectory. 

Figure 5: Edward Lorenz, dis-
coverer of chaotic weather 
patterns. 

 
From Equs. (1), one observes that the convective flow x is dri-

ven by the temperature gradients (y and z). For example, for a 
constant temperature difference y, e.g., y ≡ 0,  

 

         
atx(t ) x(t ) e−= = ⋅0                     (2) 

 
the rotation would slow down exponentially in time. On the other 
hand, these gradients are created and changed by the convective 
flow (roll). As a result, the liquid in the beaker can exhibit an or-
derly flow pattern or chaotic behavior, depending on the values 
of the parameters. These values can be changed by changing the 
heat influx into the liquid or the properties of the substance.  
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Interpreting the Lorenz variables x, y, and z as the Cartesian 
coordinates of points in a three-dimensional space and Equs. (1) 
as equations of motion for the three components {x(t), y(t), 
z(t)} of successive points on the time-dependent system "trajec-
tory" or "orbit", one can reconstruct such orbits for different val-
ues of the parameter set [a, b, r] by “integrating” the differential 
equations of motion: 

 

                             
dx

x(t t ) x(t ) t
dt

⎛ ⎞+ Δ = + Δ⎜ ⎟
⎝ ⎠

                         (3) 

 
and similarly for y and z. 

 
A program (CHAOS) is available that integrates the equations 

of motion for Lorenz' weather model. For many parameter sets, 
i.e., for low heat supply and low temperatures, the Lorenz 
weather orbit settles down to a single point in space {x, y, z}. 
These points are called "attractors". Here, the system is stable, 
exhibits a convective roll with a constant roll velocity x and con-
stant temperature differences y and z.  

 
For others parameter sets 

the orbit oscillates back and 
forth between two different 
domains in the space {x, y, 
z}, for example, the sense of 
the roll changes direction 
every so often (animation). 
Interesting orbits result for 
the parameter set [a= 10, b 
= 8/3, r = 28]. The figures 
show such orbits viewed 
from a point on the x-axis 
(top), one on the y-axis 
(middle), and one on the z-
axis. The figures were gen-
erated with the CHAOS pro-
gram. The two different do-
mains are well distinguished. 

x 

Figure 6: Trajectories in Lorenz' weather 
model populate two domains in {x,y,z}.  

z 
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action". 

tion

They are called "basins of attr
Sensitivity to initial conditions is illustrated in another 

anima . 
 

Another situation leading to chaotic dynamics is present when 
forces acting on the system are non-linear. This is the case, for 
example, when the restoring force (tension) of a spring does not 
increase in proportion to its elongation, or when a force accele-
rating a mechanical body depends on the velocity of this body. 
Generally, complexity of a system implies either or both condi-
tions, making the system behave orderly or chaotically. Exam-
ples of such systems are macroscopic containers filled with gases 
of many atoms or molecules, or even microscopic clusters con-
taining a number ( ≥ 3 !!) of constituents and atomic nuclei. 

 
It is the type of chaos due to complexity that is responsible for 

the macroscopic behavior of gases and liquids, as well as for 
many aspects of reactions between molecules, atoms, or nuclei. 
Although it is, in principle, impossible to make predictions for the 
precise state of systems such as gases, the average behavior 
of these systems is predictable, as well as the magnitude of (av-
erage) fluctuations about this average. The average behavior of 
substances is the object of Thermodynamics. It is the task of 
Statistical Mechanics, to give an explanation of for this ma-
croscopic behavior in terms of the underlying microscopic struc-
ture of the system.  

It is not self-evident, how a deterministic microscopic motion 
can lead to unpredictable macroscopic behavior in which a single, 
erratic system trajectory can cover a sizable fraction of the total 
accessible phase space. Therefore, a simple experiment will be 
discussed first, which can exhibit both orderly and chaotic dy-
namics. 
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