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The Fermi Gas Model 

 

The Fermi-gas model represents a surprisingly successful attempt 

to capture the quantal nature of subatomic particles within an N-par-

ticle approach based on the ideas of a quasi-ideal quantal gas of Fer-

mions (particles with non-integer spin). The particles are supposed 

to be interaction-free with respect to one another, but are contained 

within the walls of a container or in a holding field. This model gen-

eralizes the well-known particle-

in-a-box model to three dimen-

sions. As shown in the sketch for 

a one-dimensional box of width 

a, the system is confined by two 

vertical potential walls at 

x a=  2  with a flat bottom at 

V = 0 between the two walls. The 

walls are assumed to be infinitely 

high, 
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 Therefore, the wave functions of any particle in the box must 

disappear at the boundaries of x a=  2 . Therefore, the stationary 

single-particle states correspond to wave functions whose half-wave 

length (n) fits an integer number (n) of times into the length a of 

the box 
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 Furthermore, since the potential is symmetric with respect to re-

flection at the origin, V(-x)=V(+x), the wave functions must have a 

well-defined parity. They must be either even functions of the spa-

tial coordinate x or odd functions, specifically, one has to require       

        n

n

nx x( ) ( )− = −  +1b g                (3) 

 

As already indicated on the sketch, these requirements are fulfilled 

by the sin and cos functions, 
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with the quantized wave vectors ( divided by Equ. 2) 
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The particle-in-a-box momenta p are related to the wave vector as 

 

  p k n mn n=  = 2                 (6) 

 

where m is the mass of the particle in the box. Consequently, the 

energies of the different stationary states are 
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The energy spectrum is, hence, discrete, as expected for a bound 

system. The energies of the levels increase in distance from the 

ground state (n=1) quadratically. 

 

However, because of the inverse relation between the energy lev-

els i and the length a, these energies become smaller with increas-

ing dimension of the box. In the limit of a very large box, a →  , 

both the energies i and momenta ki become continuous variables. 

Then, one has essentially a free gas without any walls. Therefore, 

this limit represents the classical ideal gas. 

 

The above 1-dimensional model can be trivially expanded to 

three spatial dimensions, x, y, and z. Assuming that these different 

degrees are independent, i.e., that the motion is decoupled, one can 

copy the above derivation and obtains for the wave functions in 3 

dimensions a product of individual 1-dimensional wave functions, 

 

                   n n n n n nx y z x y z
x y z x y z( , , ) ( ) ( ) ( )=                 (8) 

 

The states are now numbered by triplets {nx, ny, nz} of natural num-

bers, each one describing the excitation along one degree of free-

dom. Accordingly, the momenta are now vectors with components 

given by Equ. 6 and energies, which are the sums of three terms of 

the form of Equ. 7. If the three-dimensional box is a cube with three 

equal sides a, one can write for the sum of a 3-D level 
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The momentum (phase) space is characterized by the triplet {nx, 

ny, nz} of quantum numbers just like a regular vector in ordinary 

space is characterized by three coordinates {x,y,z}. One has to keep 
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in mind, however, that only natural numbers 

are allowed for each quantum number. 

Therefore, only the space 

n n nx y z  1 1 1, ,n s is physical, i.e., only 

one of the 8 octants of the entire mathemat-

ical space, excluding the origin.  

 

The most natural coordinate system is the 

polar system, since the total energy and the total momentum are of 

interest in the present context. Hence, one deals with volume ele-

ments d p3 
 such as pictured in the sketch above, where the square 

of the distance from the origin is written as 

                            


2 2 2 2 2

2

= + + = 
F
HG
I
KJn n n p

a
x y z               (10) 

 

It is of interest to know the number of single-particle states in a 

volume element, which is equal to the number of different triplets 

{nx, ny, nz} that can be formed of the natural numbers ni =1,2,….. 

Each state can be thought to lie on one of the corners of a unit cube, 

a cube of side length   n n nx y z= = = 1  . Then, the number of sin-

gle-particle states  inside a sphere of radius  is exactly equal to 

the volume of the sphere, and its differential is given by 
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Inserting Equ. 10 into 11, one obtains for the differential number of 

single-particle states for a given momentum p, 
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Hence, the number of single-particle states in a shell in momen-

tum space is proportional (1/8th times) to the volume of that shell. 

This must be so, because the particle momentum is proportional to 

the its quantum number n.  

 

The number of single-particle states for a given energy  is now 

also easy to calculate. Since p m2 2=   and, therefore, 

 

                                                  dp pdp md2 2 2= =               (13) 

 

Equ. 12 can be transformed into 
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In the figure, the density 

function f() for single parti-

cles is depicted for electrons 

in a three-dimensional box of 

volume a3 =1Å3. Plotted is 

the number of energy levels 

vs. the energy in units of eV. 

 

If electrons have high 

enough energies, they are al-

lowed energetically to fill all 

states up to a highest level, 
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the Fermi energy F. This is also the case for the ground state (lowest 

energy, T=0) of the N-electron gas. Since an electron has a spin of 

1/2, two electrons (spin up and spin down) could fit into any given 

level. Then, the integral over the density f() up to  = F has to equal 

1/2 N, where N is the number of electrons that have to be placed into 

the single-particle level scheme : 
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This can be solved for the Fermi energy F: 
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Realizing that the last factor on the right of Equ. 17 is equal to a 

power of the particle density (N = N/a3), one arrives at the im-

portant result that the Fermi energy is the higher, the higher the spa-

tial density of the particles under consideration, 
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As an example, Cu has one free electron per atom in the conduc-

tion band. Hence, the spatial electron density of copper is 

 N cm  −8 1022 3
. Equation 17 the predicts a Fermi energy of F = 

7 eV. 

 

The level density function f() of Equ. 14 was derived above un-

der the assumption that the system was isolated from its surround-

ings. However, the surroundings can influence the electronic energy 

distribution. For example, it is shown elsewhere that, if the elec-

tronic system is held at the constant temperature of a heat bath of 

temperature T, then the energy distribution of the electrons becomes 

equal to 

                                    f e kT( ) 


 
−

          (19) 

 

This is a very familiar result. It is comforting that the treatment of 

the quantal electron system leads to an energy distribution consistent 

with the  Boltzmann distribution. 

 

The above discussion pertained to the energy spectrum and the 

number of states available to any single quantal particle in a box. 

Now, consider N particles together in the same gas, each having the 

same opportunity to occupy a given energy level (neglecting the 

Pauli exclusion principle, for the time being). Then, according to 

Equ. V.81, the total number of N-particle states is the product of N 

identical factors,  each representing the single-particle states 

available to any one of the N particles. The number of states can be 

evaluated as before for a single particle, except that there are 3N, 

instead of 3, coordinates. In addition, the available energy U is the 

sum of all individual energies, 
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         (V.20) 

 

  For a single particle, the energy  was distributed randomly over 

3 independent degrees of freedom. Now, the problem consists in dis-

tributing the total energy U over 3N degrees of freedom.  Therefore, 

the number of states (or level density, or degeneracy) is approxi-

mately given by 
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           (21) 

 

Here, V = a3 stands for the volume of the gas (not the potential!). 

The qualification "approximately" refers to the neglect of the Pauli 

Principle disallowing certain combinations and the fact that N  1 

has been assumed. 

 

The above expression is an over-estimation for the quantal gas, 

because of the indistinguishability of the particles. Any renumbering 

of the sequence {1, 2, 3, 4,….,N} refers to the same quantal state. 

There are N! possible permutations of these numbers. Therefore, a 

better approximation of the number of states of the N-particle system 

is given by dividing the expression of Equ. V.20 by (see Stirling's 

Formula) 

       N N e
N

!  b g              (22) 

 

equivalent to  

              ln ! (ln )N N N −1      (22a) 
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Finally, one obtains an expression for the number of N-particle 

states for indistinguishable particles (Bosons or Fermions): 
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where the constant factor is generally not important in the use of 

these equations. Hence, the number of states per particle is propor-

tional to the volume per particle (V/N) and depends on the available 

energy per particle as (U/N)3/2. 

 

Equation V.23 is proportional to the macroscopic entropy, which 

can be written as 

 

S k U V N Nk
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Occupation Number Distribution of a Fermi Gas 

 

So far, only the number of single-particle levels for a quantal gas 

of indistinguishable particles (Fermions or Bosons) has been con-

sidered. For a macroscopic volume, this number is very large, much 

larger than the number of particles in a mole. This raises the question 

as to how the particles are distributed over the various levels. These 
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energy configurations are the (energy projections of the) microstates 

of the N-particle system. On general grounds, one can postulate al-

ready, that the largest entropy is associated with the most random 

distribution of the particles over the available single-particle levels. 

This distribution is calculated below. 

 

Let the index i number the single-particle levels, i their energies 

and gi their degeneracies (number of states at each energy level i). 

Considering the quantal N-particle system as isolated, the following 

conservation laws (constraints) have to be valid, 

 

                                          i

i

n N=  (26) 

i.e., particle number conservation and 

 

                                          i i

i

n U =  (27) 

i.e., energy conservation. 

 

The number of N-particle configurations, the total degeneracy  

is given by the number of ways the numbers ni  of particles per level 

i can be distributed over the gi substates of the respective level. For 

one level i, there are 
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ways to distribute ni particles over the gi states of the level. For many 

levels, the numbers of particles occupying them are zero, ni = 0. In 

any case, the total degeneracy is given by the product of expressions 

of the type of Equ. 28 for every level, 
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The most probable configurations correspond to maximum entropy, 

i.e., the maximum degeneracy . This maximum is deduced from 

the constrained variational condition, 
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i i

n n   
 
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Here, the logarithm of  has been chosen for convenience. The 

constraints, Equs. (26) and (27), have been included with the    La-

grange multipliers  and . Applying the variation yields 

 

  ln 0i i

i

n    − − =  (31) 

 

Evaluating the first terms is simple for large degeneracies, when  

the Stirling formula 
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can be used, i.e., for large numbers ni1. Then, one obtains 
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Inserting this result into Equ. 31 gives 
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for the set  in  maximizing the degeneracy  with the two con-

straints of particle and energy conservation. Now, since the varia-

tions in are arbitrary, each term in the sum of Equ. 34 has to vanish, 

i.e., for every i 

 ln 1 0i
i i

i

g
n

n
  

  
− − −  =  

  
 (35) 

 

This is equivalent to 
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This is the average number of particles per state such that the total 

degeneracy  is maximized. For all practical purposes, 
in  is the 

average occupation of single-particle states of a Fermi gas. The sim-

plifications made limit the application of this formula to large sin-

gle-particle level degeneracies and large particle numbers. The pa-

rameters  and  have to be determined in an independent consider-

ation. Anticipating the results of such a consideration for a grand-

canonical situation, 
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these parameters are determined by the chemical potential  and the 

temperature T. For Fermions 
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For Bosons, a similar consideration yields 
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