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 The Equation of State for Real Gases  

 
The kinetic theory of gases has provided a microscopic under-

standing of the equation of state of an ideal gas, 
 

 
B

p V N k T =    (1) 

 

a very important law. Here, p is the average pressure, V is the 

fixed volume of the container enclosing N non-interacting, struc-
tureless gas particles, T the constant temperature imposed on the 

gas from the outside, and kB is the universal Boltzmann constant. 
Equation (1) relates the average internal energy content U of the 

gas, which is due to chaotic motion of the gas particles, to the 

temperature,  

 therm B

3
U N N k T

2
=  =     (2) 

 
This internal random-motion energy is also called “thermal en-

ergy”. For complex particles with more than translational degrees 
of freedom, such a random thermal energy can be defined also for 

the other degrees of freedom (dof). In thermal equilibrium, the 

average thermal energy per dof is always given by 
 

 therm B

1
U / dof / dof k T

2
= =    (3) 

 

The most stringent precondition for this simple theory to hold is 

the absence of interactions between the gas particles. This 

can always be achieved for sufficiently dilute gases of any kind. 

However, for higher pressures or lower temperatures, deviations 
from the ideal-gas EOS can become substantial and depend very 

much on the properties of a given gas and the experimental con-

ditions. Departures from ideal-gas EOS are usually measured in 
terms of a compressibility factor 

 

      Z := pV/NkBT      (4) 
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which is equal to unity for an ideal gas. The name reflects the fact 
that for Z > 1, one needs to exert a higher pressure than necessary 

for an ideal gas to enclose the gas in a given volume V. The gas is 

more difficult to compress than an ideal gas, i.e., it has a lower 
compressibility than an ideal gas. 

 

Experimental measurements give Z > 1 by a few per cent, for 
H2 or He, while Z < 1 for more complex molecules such as 

NH3 or CH4 indicates a higher compressibility for the latter type 

of molecule. At high enough pressures and/or high temper-
atures, however, it is seen for all gases that Z > 1, i.e., it 

becomes more difficult to compress them. This implies that, 
with increasing pressure, the interaction becomes more re-

pulsive. On the other hand, the interactions between complex gas 

molecules are at-
tractive when the 

pressures (and the 

densities) are not 
too high, i.e., aver-

age distances not too 

small. For smaller 
distances, a repul-

sive core in the in-

teraction potential 
becomes effective.  

 

The quantitatively 
different behavior of 

simple and complex 

gases can be under-
stood in terms of the 

actual interaction po-

tentials, which can be modeled in terms of the radial (r) depend-
ence of the Lennard-Jones potential 
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  (5) 
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Here,  is the strength parameter, and  is the zero of the poten-

tial. The figure compares the potentials for Ar (VAR) and C6H6 

(VCH) with one another. The potential energies have been divided 

by k (= kB) and are expressed in temperature units (degrees K), 
the distance is given in units of pm (10-12m). Obviously, the repul-

sive, hard core of the potential for the larger molecule reaches 

out to larger distances than for the smaller argon particles. Con-
sequently, the deviations of C6H6 from the ideal-gas behavior occur 

already for larger distances and associated lower pressures. 

 
In order to understand the dependence on temperature and 

pressure of the average interaction felt by the particles in a gas, it 

is instructive to inspect typical trajectories of the particles in the 
gas. The figures below show numerically calculated projectile tra-

jectories {xn=x(tn), vn=v(tn)}, the velocity of the projectile atom 

at time tn vs. its distance from the target atom. The calculations 
were done with a simple Molecular Dynamics code. The collisions 

are central (“head-on”) Ar-Ar collisions at two initial relative ve-

locities, v0 = -0.16nm/ps (left panel) and v0 = -1.6nm/ps (right 
panel). These velocities are typical (average) for T=30K and 

T=3000K, respectively. The target Ar atom is indicated at rest, at 

the left of each plot.  
 

In each case, the projectile approaches the target with an initial 

velocity v0<0 at x0=1, determined by the temperature T chosen. 
In the approach phase, the projectile is first accelerated towards 
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the target, until it reaches the equilibrium distance, the minimum 
of the potential. After that, the projectile is slowed down by the 

repulsive part of the potential, until it reaches the distance of clos-

est approach, where v=0. Thereafter, the projectile is accelerated 
back with increasing velocity. After the projectile has passed the 

potential minimum on its way out, it is decelerated by the attrac-

tive part of the potential.  
 

From the shape of the trajectories, one observes that the pro-

jectile spends a larger fraction of its trajectory within the attractive 
potential when it has a low initial velocity. A fast projectile 

traverses the attractive (V<0) potential very rapidly and runs high 
up the repulsive (V>0) core of the potential. For the two cases 

pictured above, the numerical integration along the trajectories 

yields average effective potentials of <V>=-13 kBK and 
<V>=+79kBK, for the low and high incident velocities, respec-

tively. This behavior implies that at low temperatures, the effective 

pressures of a real gas are lower than those of an ideal gas. At 
high temperatures, the situation is reversed. In the latter case, the 

real gas seems to be less compressible than an ideal gas.  There 

is obviously a classically forbidden space around each atom which 
is inaccessible by the other particles. Because of the very steep 

repulsive core of the potential, the radius of this excluded “co-

volume” does not depend noticeably on the particle velocities, i.e., 
it is not strongly dependent of temperature of the gas. 

 

In order to account for these non-ideal effects, one devises an 
effective equation of state (EOS). For example, one may add to 

the ideal-gas EOS (1) higher-order terms in pressure p or density 

. One then arrives at a virial expansion in p, 

 

 p·V = NkBT + B(T)·p + C(T)·p2 + ….              (6) 

 
which depends on the first, second, etc., virial coefficient 1, B, 

C, etc. Analogously, one could expand the product pV in powers of 

the density : 

 

        p·V = NkBT + B’(T)· +C’(T)·2+ ….                (7) 
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with corresponding virial coefficients 1, B’, C’, etc. 
 

A first qualitative understanding of the modified equation of 

state of real gases was achieved by van der Waals (1837-
1923) taking account of the finite volume of the gas molecules 

themselves, the so-called covolume b, which prevents the total 

collapse of the volume at T = 0. The available volume is strictly 
not equal to the container volume V = Videal, but is reduced by the 

covolume appropriate for the number N of gas particles: 

 
          Videal → Videal = Vreal - Nb              (8) 

 

At normal temperatures and pressures, this volume correction is 
relatively small, at most of the order of 10-4. However, in many 

industrial applications, where pressures of 100 atm to several1000 

atm are employed, the covolume is no longer negligible.  
 

Furthermore, the interactions neglected in the ideal-gas model 

are expected to also modify the pressure. For low temperatures, 
the average interaction between the particles of a real gas is at-

tractive. Hence, particles are effectively retained by the potential, 
and the pressure which they exert on the container walls is re-

duced. For room temperatures, or higher, the opposite is true. To 

account for this pressure effect in theoretical descriptions, one 
should add a pressure correction term to the actual pressure. To 

obtain an estimate, one realizes that the frequency of particle-par-

ticle interactions or ‘collisions’ scales with the probability to find 
two particles at roughly the same position. This, in turn, scales 

with the square of the gas particle density,  = N/V. Consequently, 

the pressure is expected to change with the second power in the 

particle density, : 

 

                 pideal → pideal = preal + a·2              (9) 

 
Depending on whether the effective interaction is attractive or 

repulsive, the parameter a is negative or positive, respectively. 

Since the effect of the interaction depends on the energy of the 
particles, i.e., on the temperature T, one expects the quantities a 

and b to be functions of T. However, if these corrections are 
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relatively small, one may instead try to take a and b as constants 
and expects the corrected EOS to be valid in certain limited regions 

of temperature, pressure, and density.  

 
Approximately then, one expects a real gas to follow an EOS 

equivalent in form to the ideal-gas EOS, but with the effective 

pressure and the effective volume discussed above: 
 

       

 ( )
2

B

N
p a V Nb Nk T

V

  
+  − =     

  (10) 

 
This is the van der Waals Equation. Here, the quantities a 

and b are constants characteristic of the material. The correction 
terms in Equ. (10) are often small compared to the main terms, 

such that the quantity N/V in these terms can be approximated 

by the ideal-gas expression N/V  p/kBT. Then, one derives from 

Equ. (10) the relation 
 

 
2

B2 2

ap N
p(1 )(V Nb) Nk T

p V
+  − =  (11) 

and  

          

( )

B

2

B

Nk T
pV b Np

a p
1

k T

= + 


+
 (12) 

 

which is equivalent to the van der Waals equation to first order. 

An expansion of Equ. (12) in terms of powers of the small param-
eter a·p/(kBT)2«1 yields a series of the form 

 

  p· V = NkBT +N[b - a/(kBT)]p + ….  (13) 

 

This series is of the kind of the virial expansion of Equ. (7), with 

the first virial coefficient 
 

      B(T) = N[b - a/(kBT)]   (14) 
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The figure illus-
trates this tempera-

ture dependence for 

the 2nd virial coeffi-
cients B(T) of hydro-

gen (H2) and CO2, BH 

and Bco2, respec-
tively, per particle.  

 The virial expan-

sion of the van der 
Waals equation given 

by Equ.(10) has been 
fitted to experimental 

data. Therefore, the 

curves in the figure for H2 and CO2 represent accurately the ex-
perimental facts.  

 

From the figure, one observes that for low temperatures, the 
virial coefficient B is negative, as expected for an attractive inter-

action. Because of an effectively attractive interaction, the pres-

sure measured for a real gas is smaller than for an ideal gas. For 
the reasons mentioned previously, the effect is stronger for CO2 

than for hydrogen. For very high temperatures, the virial coeffi-

cient B approaches the value of the covolume (per particle) b. 
Here, the attractive part of the interaction does not play a major 

role. The main effect is due to the repulsive core, which decreases  

The volume available to the particles. The van der Waals equa-
tion also provides expressions for the higher virial coefficients. 

 

Inspecting the van der Waals equation (10) closely, one notices 
some inconsistencies: As an illustration, the figure below displays 

the van der Waals isotherms p(T,V) for water with the parame-

ters a=0.56539 Pa m6 mol-2 and b = 3.1·10-5m3 mol-1 derived 
from experimental data. Shown are calculated curves for T = 

100-700 K. The isotherms p(V,T=const.) for the very high tem-

peratures look almost like the hyperbolas of an ideal gas. But for 
T = 650K, the real-gas isotherm develops a deflection point, and 

for T < 650K, these isotherms have an oscillatory behavior: With 

increasing volume, the pressure decreases, increases, and 
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decreases again. For small temperatures and a range of vol-
umes, the pressure even becomes negative for any sizea-

ble volume. This would require the system to collapse, an effect 

which is not observed experimentally. Even the predicted de-
crease in pressure with decreasing volume is unphysical. 

Such a system would also not be stable under compression. One 

must, therefore, conclude that the mathematical form of Equ. 
(10) is unrealistic for a real substance, at least for a range 

of temperatures and volumes or pressures. The answer to 

this problem lies in the fact that, for this range of temperatures 
and volumes, the system is no longer a gas. It has undergone, 

partially or totally, a phase transition. The liquid phase has 
become energetically more favorable than the gas phase. This 

will be discussed in detail in another section. 
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