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5  Complexity and Self-Organization in Chemical Reactions  

It has been illustrated in Sect. 1 that mechanical systems 
with several coupled degrees of freedom have a variety 
of modes, only some of which settle down in time to a sta-
ble, steady state. In other conditions, defined by the magni-
tude of system parameters, such a system is capable of os-
cillatory motion or even random, chaotic behavior. In the 
light of the previous discussion of mechanical systems, one 
wonders, how some complex chemical reactions behave. In 
fact, even many "simple" chemical reactions usually involve 
several, interrelated steps. Consider, e.g., the reaction  

    H2+Br2

 

2HBr            (71)  

Actually, this stoichiometric equation summarizes the 
following 3 intermediate processes:  

   Br2 

 

2Br 
      Br+H2 

 

HBr+H     (72) 
                    H+Br 

 

HBr  

Obviously, the reaction rates for the second and third 
processes depend on the availability of atomic Br. On the 
other hand, depleting the system of atomic Br will effectively 
speed up the dissociation of Br2. Hence, there is a feed-
back between the different reactions above, and therefore, 
one suspects that chemical systems may behave in different, 
orderly, oscillatory, or chaotic ways. This suspicion is actual-
ly borne out in reality, in particular in complex, often catalyt-
ic, reactions.  

A reaction that has been studied in some detail is the Be-
lousov-Zhabotinski (BZ) Reaction, where an organic mo-
lecule is oxidized by bromate ions, which leads to an oscilla-
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tory concentration change between colorless Ce3+ and yellow 
Ce4+ ions. The overall reaction is  

2BrO3
-+3CH2(COOH)2+2H+

 
2BrCH(COOH)2+3CO2+4H2O          

               (73)  

but more than 20 individual reactions are actually involved 
in the process. 
The Ce ions are 
not explicitly 
noted in Equ. 
73; because of 
their catalytic 
function, their 
overall concen-
tration does not 
change.  

The figure on 
the left shows 
the time evolu-
tion of the color 
scheme, reflect-
ing the Ce4+ 

concentration, 
as observed with 

a shallow layer of a BZ mixture. Curiously, adjacent spirals 
rotate in opposite direction. This behavior is obviously not 
what is generally understood to reflect a steady-state, 
time-independent chemical equilibrium.  

To describe a reaction system such as the BZ reaction in 
mathematical detail is somewhat laborious. The so-called   
"Brusselator" reaction is a much simpler reaction, since it 
involves only two reactive variables, the concentrations X 
= X(t) and Y = Y(t) of one final and one intermediate prod-

 

Figure 1: Brusselator concentration patterns

 

Figure 28: Brusselator concentration patterns for 
different times.
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uct, respectively. The individual steps in the Brusselator 
reaction are    

A 

 
X 

   B + X 

 
Y + D   

2X + Y 

 

3X            (74) 
          X 

 

E       . 

     

   A + B 

 

D + E + X  

In the process, the initial concentrations A and B of the rea-
gents and the product concentrations D and E are held con-
stant, by external regulation, at values very far away from 
chemical equilibrium. Under such conditions, equations of 
motion describing the time (t) evolution can be derived for 
the concentrations X and Y. They are only quoted here (see, 
e.g., Babloyantz):  

    

X

t
A B X X Y D

X
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Y

t
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2

2

2
2
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        (75)  

For a realistic treatment, the spatial diffusion of the mole-
cules along has to be taken into account. For a very long and 
thin chemical reactor, the diffusion is important only along a 
linear degree of freedom (r). The diffusion coefficients Dx 

and Dy depend on the different mobilities of substances A 
and B. These equations (75) are somewhat reminiscent of 
Lorenz' weather equations (see Equ. (1)) and should, there-
fore, show a similar rich dynamics of the chemical system. 
This fact has been demonstrated in class, even for two spa-
tial dimensions, with a BASIC code Koonin:BRUS.BAS

 

(load 
GWBASIC). It was shown in these simulations, how the 
time-dependent chemical-wave patterns of (surface) con-
centrations appear and disappear for some values of the 



U N I V E R S I T Y   O F

 
ROCHESTER

 
DEPARTMENT OF CHEMISTRY

 
ComplexRxn          W. U. Schröder

  
38

 
concentrations, but not for others. Unexpectedly, the effect 
of spatial diffusion does not suppress this cooperative be-
havior of a chemical system. The Brusselator system can 
actually be studied theoretically in considerable detail, a 
project that is feasible and requires only little background in 
the calculus of differential equations.  

A simpler example is the catalytic Lotka-Volterra

 

reaction. It 
is also subject of a homework project.   

Catalytic reactions represent chemical examples of non-
linear feed-back processes, which are capable of a range of 
behavior.  Consider the Lotka-Volterra process, where the 
overall reaction  A P

 

is a superposition of the following 
three reactions:    

                         
1

2

3

2

2

A x x rate k

x y y rate k

y P rate k

                      (76)  

with the corresponding reaction rates ki given in some time 
units characteristic for the overall reaction. Here, the sub-
stances x and y are catalysts, which are supplied with the in-
itial concentrations  

                                      0

0

y
x

                               (77)  

The reagent is supplied continuously to the reaction vessel 
with a constant concentration A.   

An analysis of the reaction pattern would consist in a) Writ-
ing down the rate equations (dx/dt=…, etc.) for all interme-
diate reactions, and b) an analytical or numerical solution of 
the time dependent DEqs. for the product P as a function of 
the concentration of the reagent A  provided externally and 
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the concentrations of the catalysts x and y. One would then 
plot the solutions graphically to demonstrate different influ-
ences of catalyst on stability and behavior of the reaction.   

Project: Write a MATHCAD program to explore (and discuss) 
the time evolution of the reaction for different concentrations 
of the reagent (for example A = 0.01, 0.05, 1.0, etc.).   

Use vector notation for the simultaneous iteration of the 
concentrations xi, yi, and Pi, in the time intervals ti = i dt, 
where the time step is dt = 0.01 in the above time units.   

Plot (a) the concentrations of catalyst x and product P vs. 
time ti (or index i) and (b) the "limit cycle" of P vs. x.   

Summary  

In summary, the discussion in this chapter has demon-
strated that dynamical systems, even relatively simple ones 
following very simple laws of motion, are capable both of or-
derly and of chaotic motion, depending on some system 
scaling (amplification) parameters and the initial conditions. 
These systems include the laser amplifier, whose non-linear 
dynamics was discussed in some detail in terms of the lo-
gistic map. It was possible to “understand”, i.e., to predict, 
conditions under which a laser works in a stable mode, when 
it will extinguish, when it will operate in a bi-stable pulsed 
mode, and when it will behave chaotically, delivering pulses 
of randomly different intensities. Other examples comprise 
various types of mechanical, electrical, or other oscillators 
(e.g. the heart).  

Further, different types of non-chaotic, quasi-stable or 
oscillatory (cooperative) behavior of chemical reac-
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tions were briefly mentioned. While orderly behavior is 
usually desired for mechanical systems, chemical reactions 
are most efficiently used when the interacting reagents and 
products, forming a complex feed-back system, follow a 
completely random, chaotic mode. Finally, combinations of 
iterative maps were employed to simulate some interesting 
fractal growth patterns found, not only in crystallization 
processes, but also in the living nature. While it is not clear 
that nature has proceeded in this fashion along its route of 
the evolution of life, these very simple iterative processes 
steered by genes offer that possibility.   

A large class of complex systems, naturally capable of 
chaotic motion, include systems of more than 2 interact-

ing particles, such as gases or 
liquids, or mixtures thereof, all 
systems whose individual consti-
tuents follow linear dynamics. 
Here, chaoticity is due to the 
complexity of the system, which is 
described by a system of coupled 
differential equations leading to 
non-linear feed-back effects on 
the motion of the individual par-
ticles and extreme sensitivity to 
initial conditions. This type of 
system includes multi-particle sys-
tems which will be discussed in 
more detail later (animation).   

Chaotic motion is, for fundamental reasons, essentially 
unpredictable. For certain systems, one can give general 
conditions for the occurrence of chaos or order. However, 
chaotic motion along a certain degree of freedom changes 
directions in a more or less random, stochastic fashion. 

Sensitivity to initial Conditions
in Molecular Scattering

3 initial
trajectories 

Figure 29: Complexity via mul-
tiple scattering 
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Chaotic trajectories can cover the whole accessible space un-
iformly. Waiting long enough, every point will be visited. 
Therefore, in the limit, every point has the same significance 
for the system, it has an equal a priori probability, equal 
to that of any other point. This principle underlies the 
framework of the microscopic theory of Statistical Me-
chanics, which governs the observable thermodynamic 
behavior of macroscopic systems such as gases or liq-
uids.   
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