

Complex Numbers

Representations of Complex Numbers

There are two ways of representing a complex number as a point in the Complex Plane, in Cartesian or polar coordiantes. The Real and Imaginary parts of a complex number z are the components (like x and y) of the number z in a Cartesian coordinate system. One writes

$$
\begin{equation*}
z=x+i \cdot y=\operatorname{Re}\{z\}+i \cdot \operatorname{Im}\{z\} \tag{1}
\end{equation*}
$$

Here,

$$
\begin{equation*}
i:=\sqrt{ }(-1) \tag{2}
\end{equation*}
$$

is the unit of the imaginary numbers. The quantity

$$
\begin{equation*}
|z|=\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}} \tag{3}
\end{equation*}
$$

is the norm or absolute value of z.
The number z has a complex conjugate number z^{*}, which is related to z by having the negative imaginary part:

$$
\begin{equation*}
z^{*}=(\operatorname{Re} z+i \cdot \operatorname{Im} z)^{*}=(\operatorname{Re} z-i \cdot \operatorname{Im} z) \tag{4}
\end{equation*}
$$

It is easy to see that, because of $(a+b) \cdot(a-b)=a^{2}-b^{2}$,

$$
\begin{align*}
|z| & =\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}}= \\
& =\sqrt{(\operatorname{Re} z+i \cdot \operatorname{Im} z) \cdot(\operatorname{Re} z-i \cdot \operatorname{Im} z)}=\sqrt{z \cdot z^{*}} \tag{5}
\end{align*}
$$

DEPARTMENT OF CHEMISTRY CHM 252 W. Udo Schröder

Instead of Cartesian coordinates, the point z can be represented by the length $\rho \geq 0$ of a ray from the origin to the number and the "phase angle" ϕ which the ray encloses with the real axis. Then,

$$
\begin{equation*}
z=\rho e^{i \phi} \tag{6}
\end{equation*}
$$

The equivalence of the representations (1) and (6) requires that

$$
\begin{equation*}
\rho=|z| \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\arctan \left(\frac{\operatorname{Im} z}{\operatorname{Re} z}\right) \tag{8}
\end{equation*}
$$

Since

$$
\begin{equation*}
\operatorname{Re} z=|z| \cdot \cos (\phi) \quad \operatorname{Im} z=|z| \cdot \sin (\phi) \tag{9}
\end{equation*}
$$

one also derives Euler's Formula

$$
\begin{equation*}
e^{i \phi}=\cos (\phi)+i \cdot \sin (\phi) \tag{10}
\end{equation*}
$$

Calculations with Complex Numbers

Addition and subtraction of two complex numbers, z_{1} and z_{2} are best performed in the Cartesian representation:

$$
\begin{align*}
z & =z_{1}+z_{2}=\operatorname{Re}\left(z_{1}+z_{2}\right)+i \cdot \operatorname{Im}\left(z_{1}+z_{2}\right) \\
& =\left\{\operatorname{Re}\left(z_{1}\right)+\operatorname{Re}\left(z_{2}\right)\right\}+i \cdot\left\{\operatorname{Im}\left(z_{1}\right)+\operatorname{Im}\left(z_{2}\right)\right\} \tag{11}
\end{align*}
$$

ROCHESTER
 CHM 252 W. Udo Schröder

Multiplication with a real number α or another complex number is best performed in the polar representation of Equ. 6 :

$$
\begin{gather*}
\alpha z=(\alpha \rho) e^{i \phi} \tag{12}\\
z=\rho e^{i \phi}=z_{1} \cdot z_{2}=\left(\rho_{1} e^{i \phi_{1}}\right) \cdot\left(\rho_{2} e^{i \phi_{2}}\right)= \\
=\left(\rho_{1} \cdot \rho_{2}\right) \cdot\left\{e^{i \phi_{1}} \cdot e^{i \phi_{2}}\right\}=\left(\rho_{1} \cdot \rho_{2}\right) \cdot e^{i\left(\phi_{2}+\phi_{1}\right)} \tag{13}
\end{gather*}
$$

In other words, in a multiplication of two numbers, their absolute values multiply, while their phases add. The absolute value of a "phase factor" with $\rho=1$ is

$$
\begin{equation*}
|z|=\left|e^{i \phi}\right|=\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}}=\sqrt{(\cos (\phi))^{2}+(\sin (\phi))^{2}}=1 \tag{14}
\end{equation*}
$$

