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III.3. The Kinetic Theory of Ideal Gases




Figure III‑8: Reflection

The first glimpse at the origin of thermodynamic laws is already provided by the very simple microscopic model of an ideal gas  XE "ideal gas" \i  of non-interacting, structure-less particles (atoms or molecules) moving randomly inside a container and colliding elastically with its walls. This model already provides an understanding of the structure of the most important gas law, the ideal-gas EOS, if the motion of the gas particles is in fact random. 

Consider first a single gas particle of mass m and initial momentum
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in a rectangular container with rigid walls, shown on the left in cross-sectional view. Let a coordinate system {x,y,z} be aligned with the edges of the container. This geometry facilitates the following calculation but does not restrict the generality of the conclusions.

The particle under consideration will eventually collide with one of the container walls, e.g., the one on the right, which is assumed to be parallel to the y-z plane. The collision with the rigid wall is assumed to be elastic, i.e., essentially no energy is lost by the particle. This would be exactly true only, if the mass (MWall) of the wall were infinitely large, such that a collision with a gas particle would impart very little energy, namely 
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               (III.64)

for any momentum q transferred to the wall. For the present discussion, it is assumed for simplicity that the wall is at rest, i.e., that the mass MWall of the wall is very large compared to the mass m of a gas particle (MWall (m). Then, the particle is reflected almost perfectly from the wall, that is, its momentum components parallel to the wall, py and pz, are not changed in the collision, but the component perpendicular to it, px, is reversed in direction, i.e., it changes its sign but not its magnitude | px |:
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              before                            after
Since in every collision, there is conservation of linear momenta, i.e., the sum of all momenta remains constant, the wall must have received the difference in the momenta of the particle before and after the collision. This must be true, even though the mass of the wall is assumed to be very large. This momentum transfer XE "momentum transfer" \i  to the wall is equal to




[image: image6.wmf]r

r

r

q

p

p

p

i

f

x

=

-

=

F

H

G

G

I

K

J

J

2

0

0




      (III.66)

This means that the container wall experiences a “kick” in the x>0 direction. This kick can be viewed as a force Fx, acting on the wall during the short time t of the collision. Because of Equ. III.66, the relation between momentum transfer and force is given by



Fx(t = qx = 2px

      (III.67)
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Figure III‑9:Collision Layer

Fx is the force that the container wall “feels” during the time t, from the effect of a single particle colliding with it. 

However, there may be many particles in the gas container, some of which collide with the wall on the right, some collide with one of the other walls. The question is: How many particles collide with the wall during the same (small) time interval t? - The answer is simple and can be obtained by counting the number of particles in a "collision layer" (shaded in Fig. III-9) in front of the container wall. If a particle has a velocity component in positive x direction, i.e., ux = px/m > 0, the particle moves to the right and will eventually hit the right wall, those with ux < 0 will hit the wall on the left. If, by assumption, the motion of the gas particles is truly random, 1/2 of the particles will have ux < 0, the other 1/2 will have ux >0. If there are N particles in the container, then N/2 will eventually collide with the wall in question, given enough time t. 

However, only those particles that are close enough to the wall will actually hit it during t. Only those that are closer than x = ux(t and have ux > 0 will do so. This implies that all particles in the volume V= A( ux(t with ux > 0 will impinge on the wall. With a particle density of  = N/V, one calculates that

       
[image: image8.wmf]D

D

D

N

V

N

A

u

t

V

x

+

=

×

=

×

×

×

1

2

1

2

b

g

b

g

r

         (III.68)

particles impinge on the wall within the time interval t, each transferring a momentum qx = 2px to the wall. The total momentum transfer during t is then given by
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Therefore, the pressure on the wall, defined as force Fx per area A, can be written as   
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(III.70)

or
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(III.71)

Realizing that the particles may not all have the same velocity, the quantity ux2 has been replaced in Equ. III.71 by the average, 
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,  over the entire particle ensemble. 

A similar calculation can be done for any other wall, taking into consideration also the other independent components, uy and uz, of the gas particles. If, as assumed, the motion is truly random, then there is no reason, why the average of the velocity ux in x direction, or its square, should be any different from those in other directions. Therefore, it is justified to take
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where the speed XE "speed" \i  of the particles is defined as


     
[image: image14.wmf]u

u

u

u

u

u

x

y

z

=

=

=

+

+

r

2

2

2

2



    (III.73)

Then, Equ. III.71 can be transformed into
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       (III.74)

which is now independent of any coordinate system adopted.

Since the kinetic energy of a gas particle is equal to =(1/2)mu2 relation III.74 can be rewritten as 
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Equ. III.75 makes good sense, because it relates (something like) the total energy content XE "energy content:energy content of a n ideal gas" \i  pV [= (force/area)areadistance] of the gas to a product of average energy per particle, 
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, and the number of particles, N, in the gas volume. Since V and, hence, the product pV, are extensive observables, it must be that pV ( N1 and no other power of N must appear. In other words, the average specific (per particle) kinetic energy 
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 is seen to determine the magnitude of the total energy content per particle,  pV/N, as is plausible. This average specific energy 
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 naturally depends only on the heat content of the gas, which is determined by the temperature T. What remains to be explained is the factor (2/3) in Equ. III.75. The present phenomenological treatment does not explain this factor, it only provides the structure of the EOS. However, comparing Equs. III.60b and 75, one derives an expression for the average kinetic energy of the gas particles:


[image: image20.wmf]e

=

×

3

2

k

T

B



[image: image21.wmf](III.76)


Furthermore, since the motion of the particles along any of the x, y, and z “degrees of freedom” is independent, the average total energy is equal to the sum of the average energies associated with the individual degrees of freedom,
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One concludes the validity of an Equipartition_Law
This Equipartition Law XE "Equipartition Law" \i 

 XE "Equipartition:Equipartition Law" \i  (Equ. III.78) has been made plausible here only for the kinetic energies of gas particles. However, it is derived more rigorously in the theory of statistical mechanics. This Equipartition Law is valid for essentially all degrees of freedom of practical interest. This is a very useful result, because it allows one immediately to estimate a number of quantities related to the average energy per degree of freedom, for an arbitrary system at thermal equilibrium. It also helps to understand the relation between the concepts of temperature and internal energy of a system.

For ideal gases at equilibrium, including mixtures of different types i, the Equipartition Law implies that all particles have the same average kinetic energies, 
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, which are dependent only on the common temperature T but independent of their masses mi. From this statement, one concludes immediately that the velocities must scale inversely with the masses of these particles. Considering, for simplicity, only two different particle types and only the x degree of freedom and the associated velocities ux(i), Equ. III.77 can be used to calculate this scaling:


 
[image: image26.wmf]e

e

x

x

B

x

x

m

u

k

T

m

u

(

)

(

)

(

)

(

)

1

2

1

1

2

2

2

2

1

2

2

2

=

=

=

=


   (III.79)

Therefore, one derives
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(III.80)

Heavier particles in the equilibrium gas mixture move more slowly than the lighter particles in the mixture.

Obviously, the same arguments can be made for the other degrees of freedom y and z, saying that the mean-square velocities 
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 scale inversely proportionally with the masses mi of the particles, i.e., 
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. As will be shown later on, the mean velocities XE "velocity:mean velocity" \i  
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 differ only by a constant numerical factor from the root-mean-square XE "root-mean-square:root-mean-square velocity" \i  velocities XE "velocity:root-mean-square velocities" \i 

 XE "velocity:root-mean-square velocity" \i   
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(III.81)

In thermal equilibrium XE "equilibrium:thermal equilibrium" \i 

 XE "equilibrium:thermal equilibrium" \i  with other gas particles, heavier particles move more slowly than the lighter ones.
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Figure III‑10

This latter principle has important applications for the decomposition of mixtures, e.g., the industrial separation of isotopes XE "separation:separation of isotopes" \i  of a gas, or the differential permeability of membranes XE "membranes" \i  in biology and medicine. Here, one uses the scaling of the velocities with the inverse mass to deplete a gas mixture of the more mobile, lighter particles. 

The method uses a gas container with small holes or pores through which particles can escape (effuse XE "effusion" \i ) from the container for further processing. The principle is illustrated in the sketch showing a container with two gas particle types i =1,2. The derivation of the rates of effusion of the particles through the hole in the container is simple, following Equ. III.68 with the average x velocities of the particles given by 
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: The number of particles N+(i) escaping through the hole of area A per unit time t is given by
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 (III.82)         

where i = N(i)/V is the (partial) particle density XE "density:partial (particle) density" \i  of component i. This is different from the partial mass density XE "density:mass density" \i  defined as 



m(i) = mi(i. 


(III.83)
The effusion XE "effusion" \i  rates are then seen to be proportional to the partial densities and to the inverse of the square-root of the particle masses:
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The masses of the particles in an "ideal" gas, defined by the Equation of state (EOS), are the only properties that distinguish them thermodynamically from each other. This observation relates to the fact that the energies, and not the momenta or velocities, are characterized by the same characteristic value 
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per degree of freedom (i). Hence, in thermal equilibrium, the energies are "equilibrated". Yet, the simple but important EOS, relating the macroscopic state variables p, V, and T to each other, comes about from the momentum transfer to a wall, from the particles reflected from it. In the derivation of the EOS, an assumption was made of the random distribution of the velocity directions. Given the deterministic laws of mechanical motion, it is not obvious, how such a random distribution may develop on its own, in an interaction-free ideal gas. In fact, this is the result of multiple interactions between the gas particles, chaotic molecular scattering. Such scattering processes will be considered next.
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In thermal equilibrium,  each degree of freedom has an average energy given by the amount (1/2)kBT.
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