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II.2. Simple Concepts of Classical Mechanics 

 

In the following, simple mechanical concepts of energy and 

equilibrium are recapitulated, emphasizing what will be used in 

later discussion of thermodynamic theory. In addition, illustrations 

of simple dynamics will be given. They will become useful in ap-

plications of kinetic theory and partition functions. Classical con-

cepts, which are often used in physical chemistry, include different 

forms of energy, interaction force, etc. They will be mentioned 

here without in-depth analysis, which is delegated to individual re-

view of texts on theoretical mechanics. 

 

A force F acting on an object (particle) of inertia (mass) m 

tends to either repel or attract it, from or to, respectively, some re-

gion in space, depending on its character. For simplicity, first ob-

jects are considered that can move only along a single spatial de-

gree of freedom, say x. For unbound objects, this force leads to an 

acceleration a, the rate a = dv/dt of temporal change of the relative 

velocity v, given by 

                       (II.32)  

 

which is called Newton’s Law. Since the linear momentum is de-

fined by p = m v, Equ. II.32 is equivalent to 

 

            F
dp

dt
p= =      (II.33) 

 

To move a body a distance d against the resistance of a constant 

force F const. , e.g., one due to a linear electric field tending to 

push a charged object (particle) the other way, requires the energy  

 

            E = F d   (II.34) 

F = m a 
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If the situation is characterized by a variable force, F = F(x), 

i.e., a non-linear energy field, the energy E gained by a body 

moving in the force field from point x0 to point x is given by the in-

tegral 

 

    E x x dx F x dE x E x E x
x

x

x

x

( , ) ' ( ' ) ( ) ( ) ( )0 0

0 0

= =  = −z z           (II.35) 

  

 

A few mathematical remarks: Note that the 

variable x’ of the integrand (under the integral sign) in 

Equ. II.21 must be different from the integral limits, which 

are specific values of this variable (x’=x0 and x’=x) in this 

example). The function  

dE x
E

x
dx F x dx( ) ( ) =


  =   



   

is the exact differential of the function E(x’), E is the 

primitive function (“integral”) of dE. The value of the 

above integral is given completely by just the difference in 

two numbers, the values of the energy at two positions (x0 

and x) of the body. It does not matter, on which particular 

path the body came from x0 to x. E is a state function. Lat-

er on, integrals of inexact differential will be discussed, 

where the value of the integral does depend on this path. 
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If an unbound particle of mass m is accelerated by a force F 

over a distance (x0 → x), the associated energy is converted entirely 

into additional kinetic energy Ekin of the particle, 

        

  

If, on the other hand, the particle is bound 

such as, e.g., a particle resting on the bot-

tom of a potential (gravitational) well 

would be, it requires a force F’(x) > - F(x) 

overcompensating the force F(x) due to the 

potential, in order to raise the particle to a 

level of higher potential energy 

 E V x V x dx F xP

x

x

= − = − z( ) ( ) ' ( ' )0

0

 

The force F’(x) = - F(x) >0 counteracts 

exactly (“balances”) the binding force F(x) < 0 representing the ac-

tion of the potential. In this case, one speaks of a static equilibrium 

of forces, leaving the particle motionless, at exactly the same 

height. The binding force has a negative sign, if it attracts the par-

ticle into the region of smaller x values. One describes the process 

of lifting the particle against the resistance by the potential as work 

(w) done against an external force 

 

            F
V

x
= −



    (II.38) 

 

associated with the driving potential. The lifted body has gained 

potential energy equal to the work done, w = Ep . The entity 

(II.37)  

  E E x x m v x v xkin = = −( , ) ( ) ( )0

2 2

0

1

2  

 

(II.36) 

Figure II-25 
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V/x is the partial derivative of V with respect to x, keeping all 

other variables fixed, except x.  

 

In three spatial dimensions, with a position vector 

r x y z= , ,b g  

expressed in terms of Cartesian coordinates x, y, and z, this is gen-

eralized to: 

 

   
     
F grad V r V r

V

x
u

V

y
u

V

z
ux y z= − = − = − + +

RST
UVW( ) ( )











      (II.39) 

 

where the 

ui  (i=x,y,z) are unit vectors in the respective directions. 

The vector operator 

 is called "del" or "nabla" operator. The 

equation 

 

 

                            

then results as the fundamental 

EOM (equation of motion) of the 

Newtonian mechanics. 

 

This equation is illustrated in Fig. 

II-26 for the simple case of a Har-

monic Oscillator representing, e.g., 

a vibrating atom in a linear mole-

cule (bond-stretching mode). For 

simplicity, one replaces the atoms 

on the left and right by rigid walls, 

such as shown in the sketch. This is 

a simplification, since the adjacent 

molecules may also vibrate and ex-

ert an external force on the atom.  

To illustrate the accuracy of the 

   ( )p F gradV r= = −  (II.40) 

 

V(

x) 

Molecular Vi-

bration 

    x 

Molecular Vibration 

x=0, equil. 

V(x) 

Figure II-26 



U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

II-45 

harmonic-oscillator approximation, consider an actual interaction 

potential V(r) for the interaction between two Ar atoms at distance 

r from each other. The potential is well described by the Lennard-

Jones form 

 

V r
r r

( ) = 
F
HG
I
KJ −
F
HG
I
KJ

L
NMM

O
QPP

4

12 6


 

         (II.41) 

 

with a strength parameter, given relative to the Boltzmann constant 

as  /kB = 120 K, and a range parameter of  = 341 pm [1pm=110-

12m]. The corresponding force is calculated as 

 

           F r
dV

dr r r
( ) = − = 

F
HG
I
KJ −
F
HG
I
KJ

L
NMM

O
QPP

24
2

13 7




 
            (II.42)  

 

The above Ar-Ar interaction 

energies and forces are plot-

ted in Figs. II-27 and 28 vs. 

the distance r between the 

Ar atoms (note the slightly 

different r scales!). The cal-

culation use the code  

MATHCAD_252\ArAr_LJ_

Inter.mcd. 

 

One observes from Fig. 

II-27 that the potential has a 

repulsive core at small dis-

tances, a minimum, and a shallower attractive negative part at 

longer range ("tail"). Figure II-28 shows, that the corresponding 

force goes through zero, at approximately r = req  382.5 pm. This 

Figure II-27 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/ArAr_LJ_Inter.mcd
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/ArAr_LJ_Inter.mcd
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zero demarcates  the equilibrium 

point of the potential, the bottom 

of the potential. At this "bond dis-

tance",  no net force acts on the 

atoms, which are attracted to each 

other at larger distances and re-

pelled at smaller ones.  

 
It is interesting to note that the po-

tential describing the interactions be-

tween so different entities as atoms, 

nuclei, and nucleons, have qualita-

tively the shape of a Lennard-Jones 

potential, i.e., an attractive, long-range part and a repulsive short-range 

core. Of course, the energy scales are different and characteristic of the 

associate length scales of the interacting objects. 

 

If the interaction potential had an approximately quadratic r-

dependence, then the force would be exactly linear in r. This is ob-

viously not quite the case. The force is approximately linear only 

in a range of  5 pm about the equilibrium point of the potential. 

Hence, only very small oscillations about the equilibrium may ac-

tually be considered harmonic. 

  

The harmonic approximation consists in a restriction to only 

very small oscillations about the equilibrium position x = (r-req)= 

0. Then, the restoring force in x-direction is approximately linear 

and given by Hooke’s Law 

    

      F = - cx                     

(II.43) 

 

Figure II-28 
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Here, c > 0 is the restoring-force constant, and the sign of F indi-

cates the direction of its action. The associated harmonic-

oscillator potential is given by 

 

        V(x) = (1/2)c x2            (II.44) 

 

It is easy to verify that the negative gradient of this potential is in-

deed equal to Hooke’s force. The magnitude of the force constant c 

can be obtained from a fit of the approximation of Equ. II.44 to the 

actual potential, which may be of the type of Equ. II.41. 

With the momentum of the vibrating atom given by p mx=    the 

equation of motion reads: 

 

  
dp t

dt
F cx t or mx t cx t

( )
( ) ( ) ( )= = − = −

           (II.45) 

 

In this linear regime, the vibrator must behave orderly, the motion 

is cyclic. Consequently, these equations have the oscillatory solu-

tions 

      x(t) = x(t=0) cos( t)        (II.46a) 

or 

  x(t) = x(t=0) sin( t)        (II.46b) 

 

 

with an amplitude x(t=0) and an oscillatory factor depending on 

the circular frequency 

 

         


= =
2

T

c

m
           (II.47)   

 

This frequency is related to the period T of the oscillatory mo-

tion by  = 2  Obviously, for times tn = nT (n=0,1,2,….) the 
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phase of the sine (or cosine) function is an integer multiple of 2, 

i.e.,  tn = n 2  Hence x(tn) = x(tn-1) = x(tn-2) = x(tn-3)=…. = 

x(t0=0), which is characteristic of cyclic motion with the cycle 

time (period) tn - tn-1 = T.  

 

It is clear from Equ. II.47 that the larger Hooke’s constant is and 

the smaller the inertial mass of the vibrating object, the higher its 

frequency of vibration, as is plausible.  

 

Which of the two solutions of Equ. II.46 should be adopted de-

pends on the initial conditions of the system at t = 0. For example, 

if at t = 0 the deflection of the atom is at its maximum x(0) = x0 on 

the positive x side where the atom reverses its velocity, then the 

appropriate solution would be 

 

And, therefore,      

x t x t

x t v t x t

( ) cos

( ) ( ) sin

= 

= = − 

0

0



 

b g
b g        (II.48) 

  

The second equation II.48 is for the t-dependence of the ve-

locity v(t), which is 90o out of phase with the displacement x(t). 

Obviously, position and velocity (or momentum) are correlated 

with each other and oscillate with the same period T, but by 90o 

out of phase. The trajectory, represented in a phase (space) dia-

gram of velocity vs. position, prescribes an elliptic orbit 

MATHCAD_252\DmpdOscill.mcd such as seen in the adjacent 

plot, here for angular velocity vs. angular position. Plotting the 

normalized velocity vs. position, e.g., ( )x t x0  vs. x t x( ) 0 , one ob-

tains a unit circle. 

 

Oscillator dynamics are a feature occurring for many molecules, 

as is illustrated in a simple example of molecular bending-mode 

vibrations. This could be, for example, an H2O molecule or per-

 

Figure 1 

 
Figure II-30 

Figure II-29 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/DmpdOscill.mcd
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haps a subcluster of a larger molecule. The atoms of masses m1 and 

m2 (= m1 = m, for simplicity) are placed in the t-dependent geome-

try of an equilateral triangle of fixed side length l, where they can 

pivot about the point (center atom) at the top of that triangle, 

changing the distance x=x2-x1 between the two atoms. If the atom-

atom interaction is of a van der Waals (Lenard-Jones) type, then 

there is an equilibrium distance x = xequ between the two atoms, 

i.e., there is attraction for larger and repulsion for smaller distanc-

es.  

 

Assume for simplicity then the linear force law of the type of 

Equ. II.43, F = -c(x - xequ), where xequ is the equilibrium distance 

between the atoms and c > 0 the restoring-force constant. This 

problem is really one of rotational motion of the atoms at a fixed 

radius r = l about the pivot point, with the only degree of freedom 

being the bond angle 2. Then, the problem is solved easiest when 

expressed in that coordinate. First, the force acting between the 

two atoms 1 and 2 is written in terms of half the bond angle, 

 = (+)/2: 

 

F = - cl2 (sin − sinequ)                (II.49)  
 

For small deviations about the equilibrium, where sin− 

sinequ  −equ , one recovers essentially the force law for (rota-

tional) harmonic oscillations (Equ. II.43) about the equilibrium 

bond angle of 2 = 2equ with a modified force constant. This ap-

proximation is used here for illustrative purposes, but is not made 

in the numerical calculations explained further below. 

 

It is important to realize that the above force accelerates the two 

atoms relatively to one another, it acts on the relative motion of 

the two interacting atoms. The total kinetic energy of this rotation 

is the sum of the individual kinetic energies 
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   K K K
m

v
m

v m m= + = + = +LNM OQP1 2
1

1

2 2
2

2

1 1

2

2 2

2

2 2

1

2
   d i d i    

 

For equal masses, m1= m2= m as assumed here, this expression 

simplifies considerably: 

 

     K m m
m

= +LNM OQP = +
1

2 2
1 1

2

2 2

2
2

1

2

2

2        d i d i      (II.51) 

 

Since both atoms move each with the same individual velocity ei-

ther towards the other or away from it, i.e.,      1 2= − = =  the 

relative velocity between the two atoms is given by  

               

v
d

dt
rel = − = −

=  = 

  

 

sin sin cos( )  

cos( )  cos( )

    

   

1 2 1 2

2 2

b g d i
       (II.52) 

 

Here, a popular assumption of cos( ) 1would actually not be 

very good. In terms of this relative velocity, the kinetic energy of 

bending is  

           K
m m v

vrel
rel=   =  =

2
2

2 2 2

2
2

2 cos( ) 
b g        (II.53) 

 

This equation has been derived for this particular case equal mass-

es. However, it enjoys in fact a much more general validity. For 

the relative motion of two bodies, the reduced mass  

     =


+

m m

m m

1 2

1 2
            (II.54) 

 

(II.50) 
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is the characteristic mass and the relative velocity rel=1 - 2 is 

the characteristic velocity. For the case of equal masses, the re-

duced mass is equal to half the mass of each particle, = m/2.  

 

It is this fictitious particle that is accelerated by the force F to an 

increased (relative) velocity, corresponding, in the present exam-

ple, to a temporal rate of change of the relative angle between the 

two atoms, which is equal to the total bond angle. As an equation 

for the present bending motion, one obtains 

         

In the small-amplitude approximation,   equ and 

sin−sinequ   cosequ(−equ), the above equation reduces to one 

of the type of Equ. II.45 for harmonic oscillations of the bond an-

gle:  

                

 

 

 

While the approximate Equ. II.56 has obviously simple analyti-

cal solutions, the more accurate differential equation II.55 is slight-

ly more difficult to solve. The solution of this latter equation pre-

sents an opportunity to apply numerical integration methods (see 

Tutorial), which are useful in many different areas of physics and 

In general, one can represent the relative motion of two 

particles with respect to one another by that of a fictitious 

particle with a mass equal to the reduced mass , moving 

with a velocity given by the relative velocity vrel.  

 

d

dt

d

dt

F cequ

equ

2

2 1 2
2

 
 



 
 

−
= = − = = = − −

d i d i 
                

(II.56) 

(II.55) 
dp

dt

d v

dt

d

dt
F c

rel

equ= = = = − −
   

 
b g b g d i2

2



cos

sin sin

 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Int_DiffEOM.doc
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Int_DiffEOM.doc
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chemistry. They allow one to treat much more complicated prob-

lems than one can hope to solve analytically. 

 

The equation of motion II.56 is solved here numerically to 

simulate the symmetric bending vibrations of the H2O molecule, 

using the Euler-Cromer method for the integration of the differen-

tial equation. It suffices to know the experimental vibrational fre-

quency 0

11595= −cm  and the equilibrium bond angle equ = 

104.5o of the H2O molecule to perform the simulation calculations, 

which has been done with the MATHCAD program 

MATHCAD_252\Bending_VibesN.mcd. The results can be 

viewed as an animation showing regular harmonic oscillations 

about the equilibrium bond angle. The phase diagram is, as ex-

pected from the character of the solutions [compare Equs.II.46] a 

closed ellipsis. 

 

One of the great advantages of numerical simulation calcula-

tions is the ease by which additional physical phenomena can be 

accounted for. For example, if the above water molecules are not 

in free space but interact with other particles, e.g., those of a host 

vapor or gas, the H2O bending vibrations will be slowed down by 

frictional forces. As will be shown in a later section, random colli-

sions between the molecule and vapor particles which are in 

thermal motion lead to classical friction forces that are proportion-

al to the velocity  of the molecule,  

 

        Ffrict = −        (II.57) 

 

Here,  > 0 is a frictional strength parameter. The negative sign 

is necessary to account for the slowing-down action of this force: it 

decelerates. Frictional or viscosity parameters are known experi-

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Int_DiffEOM.doc%23Euler_Cromer_Method
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bending_VibesN.mcd
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bend_Vibs.avi
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mentally for many gases and liquids. Frictional forces can simply 

be added to the conservative Lennard-Jones force F in Equ. II.56.  

 

Another effect that may possibly influence the motion of H2O 

molecules is due to its coupling to other molecules which also vi-

brate, but with frequencies D characteristic of their own normal 

modes. They could exert an external driving force FD on the H2O 

molecule. The molecule could also be subjected to an oscillating 

external electric field. In both cases, the H2O molecule would feel 

a driving force of the type 

 

                  F t F tD D Db g b g= sin        (II.58) 

  

which again can be added simply to the force in Equ. II.56. 

 

Both of the above effects are modeled in the MATHCAD code 

MATHCAD_252\Bending_VibesN.mcd. The effect of a moderate-

ly strong friction force (=0.04) can be seen directly in the anima-

tion. The phase space plot for a damped vibrator is shown in Fig. 

II-31. 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bending_VibesN.mcd
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bend_Vibs_dmd.avi
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bend_Vibs_dmd.avi
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 As is obvious from this plot, the bending motion is no longer 

strictly cyclic. The oscillations are damped, leading to a spiral 

phase space plot indicating a decrease of both position and veloci-

ty amplitudes, as time proceeds. Eventually, the bending vibrations 

subside completely, the molecule remains in its equilibrium state. 

Quantum-mechanically, of course, there would still be zero-point 

oscillations. 

 

With the presence of an additional external driving force FD, the 

bending motion becomes more complex. As an example, the ani-

mation illustrates the erratic behavior of the H2O molecule, when it 

is subjected to a moderately strong external force (FD=0.009) with 

a frequency D =1/3 0, one-third of that of the H2O bending 

mode. Although not cyclic, the motion is not completely chaotic, 

either. The phase plot shows interesting pirouettes leading eventu-

ally to a quasi-stable orbit. The corresponding feature in the phase 

space plot is an approximate ellipse, the so-called limit-circle. It 

appears somewhat broad, because it is only roughly outlined by the 

trajectory which fluctuates somewhat about the average. 

Figure II-31: Phase plot for damped bending vibrations 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bend_Vibs_caos.avi
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bend_Vibs_caos.avi
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The above calculations have assumed small oscillations about 

the equilibrium bond angle, for which sin sin  eq and 

d dt d dtsin b g  . There-

fore, the above results for 

forced vibrations cannot be 

taken too literally. However, 

to make such approximations 

is not necessary in numerical 

calculations, which can easily 

be modified. Taking the full 

expression for   correspond-

ing to Equ. II.55 (see home-

work problem), instead of the 

approximate Equ. II.46, leads 

(MATHCAD_252\Bending_VibesEx.mcd) again to the same clas-

ses of orbits as before in the approximate calculations. Now, how-

ever, the oscillations are no longer of the pure sine or cosine types. 

Correspondingly, the closed orbits in the -  phase plane are no 

Figure II-32: Bending vibrations with external excitation 

Figure II-33 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bending_VibesEx.mcd
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longer ellipses or circles but have a pear-like shape, as seen in the 

figure. This is due to the fact that the distance between the atoms 

changes more rapidly at smaller than at larger bending angles, a re-

flection of the sine-dependence of this distance. The behavior for 

damped and forced oscillations modifies accordingly.  

 

The phase plot below illustrates a trajectory for H2O bending 

vibrations with moderate friction ( = 0.02) and moderate 

(FD=0.009) driving forces. The trajectory makes loops and pirou-

ettes, before it settles down on a quasi-stable orbit. The final orbit 

is qualitatively bi-stable: it oscillates erratically back and forth be-

tween the two regions in angle about 45o and 60o, which are the at-

tractors of the vibrator. The vibrational trajectory, which in other 

examples discussed above had a smooth behavior, following basi-

cally the same general sense, has bifurcated. The richness of the 

motion that such a simple system can exhibit for different combi-

nations of the various forces, is quite intriguing. It is discussed in 

detail in dedicated studies of chaotic dynamics or deterministic 

chaos.  

 

Depending on the relation 

between the strength of the 

frictional and driving forces, 

the vibrational motion can 

degenerate to a completely 

chaotic vibration filling an 

entire region of the phase 

space almost uniformly. Such 

completely chaotic systems 

visit essentially each point in 

phase space in time, if one 

waits long enough. Therefore, 

for completely chaotic motion, no point in phase space is preferred 

Figure II-34 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Bibliography.doc%23chaotic_dyn
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over another. This is the Principle of Equal A Priori Probability, a 

postulate that is of fundamental importance for statistical thermo-

dynamics. 
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Summary and Appendix II.2 

 

In this section, simple concepts of mechanics that are of im-

portance for the understanding of the behavior of chemical systems 

have been discussed. They include the concept of a force and its 

relation to the conservative potential. A body is in mechanical 

equilibrium, if all applied forces balance out to zero, leaving the 

body at rest or in a state of steady motion. Force acting over a dis-

tance imparts energy on a particle. Newton's Law, relating the 

force to a temporal change of an object's linear momentum, pro-

vides a differential equation of motion for that object. 

 

Linear force laws lead to oscillatory motion such as the sym-

metric bending vibrations of an H2O molecule. The motion of two 

particles can be described efficiently in terms of a fictitious particle 

with a mass equal to the reduced mass of the particles, moving 

with a velocity equal to the relative velocity of the two particles. 

The system trajectories can be pictured in a phase plot, where os-

cillatory motion leads to elliptic closed orbits. Nonlinear forces 

lead to a complex, even chaotic, behavior of simple mechanical 

systems. Simulations of the motion can be performed with numer-

ical, iterative integration of the differential equations defining the 

system trajectories. 

 

Further Reading: 

 

S.E. Koonin, Computational Physics, Benjamin/Cummings (Menlo 

Park), 1986 

R.H. Landau and M.J. Paez, Computational Physics, John Wiley 

&Sons (New York), 1997 

N.J. Giordano, Computational Physics, Prentice Hall (Upper Sad-

dle River, N.J.) 1997 
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Appendix II.2: MATHCAD Programs and Tutorials 

 

The following Tutorials are called in the Interactive Lec-

ture/Study Notes for Section II.1.6, when the corresponding links 

are activated. 

 

Complex_Numbers.doc 

Summarizes representations of and calculations with complex 

numbers. 

 

Int_DiffEOM.doc 

Numerical methods for integrating differential equations of mo-

tion. 

 

Taylor_Expansion.doc 

Successive series approximation of a function at a given point, 

based on the derivatives. 

 

The following MATHCAD programs are called in the Interac-

tive Lecture/Study Notes for Section II.1.6, when the corresponding 

links are activated. 

 

MATHCAD_252\ArAr_LJ_Inter.mcd 

Calculation of the Lennard-Jones interaction potential and force for 

Ar-Ar interactions 

 

MATHCAD_252\DmpdOscill.mcd 

Calculates the motion of a damped oscillator and produces plots of 

position and velocity, also as phase space plots 

 

MATHCAD_252\Bending_Vibes.mcd 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Complex_Numbers.doc
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Int_DiffEOM.doc
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Taylor_Expansion.doc
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/ArAr_LJ_Inter.mcd
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/DmpdOscill.mcd
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bending_Vibes.mcd
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Performs numerical integration of small-amplitude bending vibra-

tions of the H2O molecule, including damping and external driving 

forces. 

 MATHCAD_252\Bend_Vibs.avi 

 Video clip of regular H2O bending vibrations 

 

 MATHCAD_252\Bend_Vibs_dmd.avi 

 Video clip of damped H2O bending vibrations 

 

 MATHCAD_252\Bend_Vibs_caos.avi 

 Video clip of chaotic, driven H2O bending vibrations 

 

file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bend_Vibs.avi
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bend_Vibs_dmd.avi
file:///D:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Bend_Vibs_caos.avi

