Thermodynamics: Phenomenology

- Work and other forms of energy

Transfer and dissipation

- 1. \& 2. Fundamental Laws of Thermodynamics
- Ideal-gas laws and simple processes

Technological applications, cyclic engines

- Real gases equation of state

Technological applications

- Phase equilibria
- Free energy in chemical reactions

Reading Assignments
Weeks 13\&14
LN V-VI:

Kondepudi Ch. 7 \& 9
Additional Material
McQuarrie \& Simon
Ch. 7 \& 8

Condensed-Phase TD (Pure Liquids \& Solids)

EoS of solids and liquids: limited response of volume to pressure and temperature $\rightarrow V=V(p, T)$

Isothermal compressibility
$\kappa_{T}:=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}$

$$
d V=\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T} d p
$$

Volume expansion coefficient

$$
\alpha:=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}
$$ compressibility κ_{γ} for some liquids and solids.

Compound	$\alpha\left(10^{-4} \mathrm{~K}^{-1}\right)$	$\kappa_{Y}\left(10^{-6} \mathrm{~atm}^{-1}\right)$
Water	2.1	49.6
Benzene	12.4	92.1
Mercury	1.8	38.7
Ethanol	11.2	76.8
Carbon tetrachloride	12.4	90.5
Copper	0.501	0.735
Diamond	0.030	0.187
lron	0.354	0.597
Lead	0.861	2.21

$V(p, T)=V\left(p_{0}, T_{0}\right) \cdot e^{\alpha\left(T-T_{0}\right)} \cdot e^{-\kappa T\left(p-p_{0}\right)}$

$$
V(p, T) \approx V\left(p_{0}, T_{0}\right)\left[1+\alpha\left(T-T_{0}\right)-\kappa_{T}\left(p-p_{0}\right)\right]
$$

Per mol entropy $s(p, T) \approx s_{0}+\int_{0}^{T} \frac{c_{V}\left(T^{\prime}\right)}{T^{\prime}} d T^{\prime}$
Solids : $C_{V}=3 \cdot R \cdot F_{\text {Debye }}(T) \longrightarrow 3 R$
Weak dependence of coefficients on temperature

Phase Domains

Gibbs Free Energy for a Pure Substance
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta G=G(l)-G(s)$
$G(p, T)=H-T S \quad$ app. linear in T

$$
\mathrm{dG}=\mathrm{V} \cdot \mathrm{dp}-\mathrm{S} \cdot \mathrm{dT}
$$

slope of line: negative of

$$
\mid S \text { (gas) }|>| S \text { (liquid) }|>| S \text { (solid) } \mid
$$

The phase with the lowest free energy is the most stable.

Phase equilibrium at $\Delta \boldsymbol{G}=\mathbf{0}$
At melting and boiling points:

$\Delta S_{\text {fus }}=(\Delta H / T)_{\text {fus }}>0$	$\Delta G<0$
$\Delta S_{\text {vap }}=(\Delta H / T)_{\text {vap }}>0$	$\Delta G<0$

p-Dependence of Phase Domains

p-T Dependence of Gibbs Free Energy

S-T Diagrams for Steam Carnot Processes

Enthalpy, entropy are extensive.
$x=$ steam quality (fraction gas)
$h=(1-x) \cdot h_{f l}+x \cdot h_{\text {gas }} \quad h=H /$ unit mass
$s=(1-x) \cdot s_{f l}+x \cdot s_{g a s} \quad s=S /$ unit mass
Example: $s(d)=s(a)=3.808 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$s(d)=\left(1-x_{d}\right) \cdot s_{f l}+x_{d} \cdot s_{g a s}=3.808$
$0.436 \quad 8.452$
Solve for $x_{d}=0.42, \ldots \ldots . . \rightarrow$ calculate h_{d}, \ldots.

Phase Equilibria

Mixture of gas (vapor) and liquid

Clapeyron Equation defines p, T dependence of phase equilibrium. Water:
$\Delta V_{1 \rightarrow v}=[V(v)-V(I)] \approx V(v)$
$V(v)=30.2 \mathrm{I} / \mathrm{mol}$
$T_{b}=373.1 \mathrm{~K} \quad \Delta H_{\text {vap }}=40.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G=G(v)-G(I) \approx 0$ Phase difference
Equil: all components have same G.
Different $p, T: p, p=p+d p \quad T, T=T+d T$

Clapeyron Equation

$$
\begin{aligned}
d G(V)=V(V) d p & -S(V) d T= \\
& =V(I) d p-S(I) d T=d G(I)
\end{aligned}
$$

$\frac{d p(T)}{d T}=\frac{S(v)-S(l)}{V(v)-V(l)}=\frac{\Delta S}{\Delta V}$
$\frac{d p(T)}{d T}=\frac{\Delta H_{v a p}}{T \cdot \Delta V}$

Boiling point increase:
$d T(p) / d p=0.28 \mathrm{~K} / \mathrm{kPa}>0$

Measuring and Predicting Vapor Pressures

$$
\begin{gathered}
\frac{d p}{d T}=\frac{\Delta H_{\text {vap }}}{T \cdot \Delta V} \text { with } \Delta V \approx V(V)=\frac{n R T}{p} \\
\frac{d p}{d T}=\frac{\Delta H_{\text {vap }}}{T \cdot \frac{n R T}{p}}=p \frac{\Delta H_{\text {vap }}}{n R T^{2}} \rightarrow \frac{d p}{p d T}=\frac{\Delta H_{\text {vap }}}{n R T^{2}} \\
\begin{array}{l}
\text { Clausius - Clapeyron } \\
\frac{d \ln (p)}{d(1 / T)}=-\frac{\Delta H_{\text {vap }}}{n \cdot R}
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \ln (p(T))=-\frac{\Delta H_{\text {vap }}}{n R} \cdot \frac{1}{T} \\
& \ln \left(\frac{p\left(T_{2}\right)}{p\left(T_{1}\right)}\right)=-\frac{\Delta H_{\text {vap }}}{n R} \cdot\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
\end{aligned}
$$

Example

Normal boiling point of a liquid (T_{b}): vapor $p=1 \mathrm{~atm}$ (760 Torr).
Vapor pressure of benzene: $p=75$ Torr at $T=20^{\circ} \mathrm{C}$.
Q: What is boiling point of benzene?
Hint: Use Clausius-Clapeyron. Tables: $\Delta H_{\text {vap }}=30.8 \mathrm{~kJ} / \mathrm{mol}$
A: Calculate T_{b} for benzene, when $p_{1}=75$ Torr at $T_{1}=293^{\circ} \mathrm{C}$ is known.

$$
\begin{aligned}
\frac{1}{T_{2}} & =\frac{1}{T_{1}}-\ln \left(\frac{p\left(T_{2}\right)}{p\left(T_{1}\right)}\right) \frac{n R}{\Delta H_{\text {vap }}} \\
& =\frac{1}{293 \mathrm{~K}}-\ln \left(\frac{760 \mathrm{Torr}}{75 \text { Torr }}\right) \frac{8.3145 \mathrm{~J} / \mathrm{Kmol}}{30.8 \mathrm{~kJ} / \mathrm{mol}}=\frac{1}{359 \mathrm{~K}} \\
T_{2} & =359 \mathrm{~K}\left(86^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Solutions

Mixture of pure substances, each with different phases,
$i=1,2, \ldots . ., A$ counts substances and phases, n_{i} moles
a e.g., $i=1$ (liquid water), $i=2$ (water vapor),
$\mathrm{i}=3($ solid NaCl$), \mathrm{i}=4\left(\mathrm{Na}^{+}\right.$aqu), $\mathrm{i}=5$ (Cl${ }^{-}$aqu)
Chemical potential (for substance in a given phase) $p, T=$ const.: $\mu_{i}=G_{i} / n_{i}$

Total free energy
$G=n_{1} \cdot \mu_{1}+\ldots+n_{A} \cdot \mu_{A}=\sum_{i=1}^{A} n_{i} \cdot \mu_{i}$
Equilibrium: $G=$ minimum,$\quad \Delta G=0$
$\sum_{i=1}^{A} \mu_{i} \Delta n_{i}=\mu_{1} \Delta n_{1}+\ldots+\mu_{A} \Delta n_{A}=0$

Multi-Component Solution

Free energy of individual component i
$\mu_{i}=\mu_{i}^{0}(v)+R T \ln \left(p_{i}\right) \quad i=1,2, \ldots, A$
in equilibrium with its own pure liquid i :
$\mu_{i}^{\text {pure }}(l)=\mu_{i}(v)=\mu_{i}^{0}(v)+R T \ln \left(p_{i}^{\text {vap }}\right)$

If component i is part of (mix) equil. solution

$$
\begin{aligned}
\mu_{i}(\text { sol }) & =\mu_{i}^{0}(v)+R T \ln \left(p_{i}\right)= \\
& =\left[\mu_{i}^{\text {pure }}(l)-R T \ln \left(p_{i}^{\text {vap }}\right)\right]+R T \ln \left(p_{i}\right) \\
& =\mu_{i}^{\text {pure }}(l)+R T \ln \left(p_{i} / p_{i}^{\text {vap }}\right)
\end{aligned}
$$

Multi-Component Solution

If substance $i(i=1, \ldots, A)$ is part of a solution, then its vapor pressure and chemical potential are different, influenced by other components (they all interact).

$$
\mu_{i}(s o l)=\mu_{i}^{\text {pure }}(l)+R T \ln \left(p_{i} / p_{i}^{\text {vap }}\right)
$$

Raoult's Law: vapor pressure of component in solution is reduced by mole fraction:

$$
p_{i}=x_{i} \cdot p_{i}^{\text {vap }} \quad \text { (plausible) }
$$

Then:

$$
\mu_{i}(\text { sol })=\mu_{i}^{\text {pure }}(l)+R T \ln \left(x_{i}\right)
$$

Adding an impurity to a liquid i, lowers x_{i} and its potential

$$
\mu_{i}(\text { sol })=\mu_{i}^{\text {pure }}(l)+R T \ln \left(x_{i}\right)<\mu_{i}^{\text {pure }}(l)
$$

Example: Osmotic Pressure

Volume B containing a pure solvent (e.g. blood serum) is in contact with volume A (cell) containing solvent and solute. Semi-permeable membrane lets solvent pass but not solute.

$$
\begin{aligned}
& \mu_{\text {serum }}(\text { sol })=\mu_{\text {serum }}^{\text {pure }}(l)+R T \ln \left(x_{\text {serum }}\right) \\
& \mu_{\text {serum }}(\text { sol })<\mu_{\text {serum }}^{\text {pure }}(l)
\end{aligned}
$$

Since the solution (A) has lower potential, solvent flows spontaneously through the membrane and increases the mole fraction and pressure inside A. Increased pressure/activity prevents such flow:

$$
\ln \left(p_{\text {serum }}\right)=-\left(\frac{\mu_{\text {serum }}(\operatorname{sol})-\mu_{\text {serum }}^{\text {pure }}(l)}{R T}\right)
$$

