- Work and other forms of energy Transfer and dissipation
- 1. & 2. Fundamental Laws of Thermodynamics
- Ideal-gas laws and simple processes
 Technological applications, cyclic engines
- Real gases equation of state

Technological applications

- Phase equilibria
- Free energy in chemical reactions
 - Thermochemistry, electrochemistry
- Kinetic theory of gases

Reading Assignments Weeks 11&12 LN V-VI:

Kondepudi Ch. 3 & 4 Additional Material

McQuarrie & Simon Ch. 5 & 6

0. LTD: Systems in Thermal Contact Equilibrate

Observation: (Zeroth Law TD) systems in contact exchange energies until temperatures $T_1=T_2$ Disequilibrium: Two systems, 1 and 2, with fixed individual particle numbers and energies, $A_1+A_2 = A$, $E_1+E_2 = E = const$. # of states $\Omega_1(E_1)$ and $\Omega_2(E_2)$, initially Isolated combined system CS = 1+2 \rightarrow total energy is fixed, $E_1+E_2 = E$, but partition E_1/E_2 can vary through heat (q) exchange between 1 and 2 (no particle exchange).

Heuristic argument (specific for exchange of *q* between systems, \approx postulate): How likely is any E_1/E_2 , how does it evolve in time?

Maximize $P(E_1, E_2) \propto \Omega_{CS}(E_1, E_2) = \Omega_1(E_1) \cdot \Omega_2(E_2) = \Omega_1(E_1) \cdot \Omega_2(E - E_1)$

(We know: If all configurations are equally likely (Eta Theorem) → maximizes entropy) Phenomen 1&2. LTD 2 W. Udo Schröder 2021

Maximizing Opportunities (# of states)

Heuristic argument: Maximize $P(E_1, E_2)$ $P(E_1, E_2) \propto \Omega_{CS}(E_1, E_2) = \Omega_1(E_1) \cdot \Omega_2(E - E_1)$

Conservation of total energy $E = E_1 + E_2 = const$ Heat energy (*q*) transfer \rightarrow probability change, constraint $\Delta E_1 = -\Delta E_2 < 0$

Product rule :

$$\frac{dP}{dE_1} \propto \frac{d\Omega_1(E_1)}{dE_1} \Omega_2(E_2) + \Omega_1(E_1) \frac{d\Omega_2(E_2)}{dE_1}$$

$$=\frac{d\Omega_1(E_1)}{dE_1}\Omega_2(E_2) - \Omega_1(E_1)\frac{d\Omega_2(E_2)}{dE_2}$$

$$Maximum P : \frac{dP}{dE_1} = 0 \implies \frac{1}{\Omega_1} \frac{d\Omega_1(E_1)}{dE_1} = \frac{1}{\Omega_2} \frac{d\Omega_2(E_2)}{dE_2} \neq 0$$

Entropy and Energy at Equilibrium

Many systems in mutual contact \rightarrow eventual stationary state – maximum probability all acquire same temperature T

$$\left(\frac{1}{\Omega}\frac{d\Omega(E)}{dE}\right)_{1} = \left(\frac{1}{\Omega}\frac{d\Omega(E)}{dE}\right)_{2} = \left(\frac{1}{\Omega}\frac{d\Omega(E)}{dE}\right)_{3}\cdots\cdots \Rightarrow \frac{d\Omega(E)}{\Omega dE} = \frac{d\ln[\Omega(E)]}{dE} = const.(E)$$

Independent of material, size, shape, amount (although limited variation at the time of experiments). \rightarrow Depends on energy, supplied to one of the systems as heat. Variable has dimension 1/energy.

But this heat energy dependent variable const.(E) is not extensive!

Suspect const. ~ temperature T = intensive variable depending on energy, since

System energy content of an ideal gas (N particles): $P \cdot V = N \cdot k_B \cdot T$

Construct *intensive* energy variable: $\langle E/N \rangle \sim \frac{P \cdot V}{N} = k_B \cdot T$

$$\frac{d\ln[\Omega(E)]}{dE} \propto \frac{d[S(\langle E \rangle)]}{d\langle E \rangle} = \left(\beta \cdot T\right)^{-1} \qquad S(\langle E \rangle) \sim S_0 + \frac{\langle E \rangle}{T}$$

integration constant

Simplest form compatible S extensive Define general thermodyn function $S(E) = constant \cdot Ln\Omega(E) \ge 0$; for $\Omega \ge 1$

$$S(E) = k_{B} \cdot Ln \, \Omega(E) \geq 0$$

$$\Omega(\boldsymbol{E}) = \boldsymbol{e}^{S(\boldsymbol{E})/k_{B}} \geq 1$$

System with $\Omega = \#$ intrinsic states, initially in ground state $T_{sys}, E \approx 0; S \approx 0$ brought in contact with "Heat Bath" at temperature T_{hb} spontaneously acquires heat energy $\Delta \langle E \rangle = \Delta q \rightarrow$ stationary state = Thermal Equilibrium : maximum spread of $\Delta \langle E \rangle$ over Ω , system $\rightarrow T_{sys} \approx T_{hb}$

Then : $S(E) = k_B \cdot Ln\Omega(E)$ (in appropriate units) and $S(E) = S_{max}(E)$

$$S(\langle E \rangle) = \frac{\langle E \rangle}{T_{sys}} \ge 0$$

Heat absorption / emission by system $@T_{sys}$: $\Delta \langle E \rangle = \Delta q \rightarrow \Delta S = \frac{\Delta q}{T_{sys}}$ sign ΔS = sign Δq

In spontaneous processes, entropy (always) increases: $\Delta S > 0$

Sample1: Path to Equilibrium

Energy dissipation by transfer of heat, dissipation, convection,... Entropy is a driving force for equilibration (Eta-Theorem)

Irreversible entropy gains and losses

$$\Delta S_1 = \frac{\Delta q_1}{T_1} = \frac{-\Delta q}{T_1} < 0 \qquad \Delta S_2 = \frac{\Delta q_2}{T_2} = \frac{\Delta q}{T_2} > 0$$

Composite system:

$$\Delta(S_1 + S_2) = \left(\frac{-1}{T_1} + \frac{1}{T_2}\right) \cdot \Delta q = \left(\frac{T_1 - T_2}{T_1 T_2}\right) \cdot \Delta q > 0$$

General form $dS_i = driving Force \cdot irreversible$ flow

Heat exchange as long as $-\Delta S_1 = -\Delta q_1/T_1 < \Delta S_2 = \Delta q_2/T_2$

Note: In case of $T_1 \approx T_2$, heat can be exchanged isentropically, at $S \approx \text{const.}$ Intrinsic energy distribution over Ω is conserved \rightarrow reversible processes.

Phenomen 1&2. LTD

hot plate T_1

cold $T_2 < T_1$

Example1: Thermal Equilibrium

Energy dissipated evenly over entire system heat exchange (Δq) back and forth, no net transfer,

 $\Delta q = \Delta U (= \Delta E).$ sign (Δq) = sign (ΔU)

Entropy gains and losses

ΔS_1	ΔS_1	ΔS_1	1
ΔU_1^{-1}	Δq_1	Δq	T
ΔS_2	ΔS_2	ΔS_2	_ 1
ΔU_2	Δq_2	Δq	T

For any system at temperature T_{low} in contact with others at $T_{high} > T_{low}$: Equilibration occurs with heat absorption at T_{low} : entropy gain $\Delta S = \Delta q / T_{low}$ regardless of substance and construction!

Simulation: Energy Equilibration

Discrete energy states of interacting systems

Initial conditions

 $\langle \mathsf{E}_1 \rangle \approx \mathsf{E} \quad \langle \mathsf{E}_2 \rangle \approx \mathsf{0}$

Random ± energy and ± momentum exchange Initial mean energies

$$e_1 = E_i / A_i \neq e_1 = E_2 / A_2$$

Final mean energies

thermalization $e_i \rightarrow T_i = T$ energy fluctuations

$$\sigma_{e_i}^2 = k_B T^2 C_V$$

2. Law RD: Entropy of Ideal Gases

Entropy S of a system \leftrightarrow distribution of entire energy content over all Ω accessible states \rightarrow closed (isolated) systems in equilibrium $S = S_{max} = const.$ for e.g., system + entire surrounding

In internal disequilibrium: $dS = dS_{intr} > 0 \rightarrow spontaneous, irrev. process$ disparity in temperature \rightarrow thermal driving force F, drives irreversible heat flow dq $\rightarrow dS = F \cdot dq$ (heat flow carries entropy) Mass or energy exchange $\rightarrow dS_{exch} \ge \frac{q}{T}$ system temperature T

Iso-thermalization (*T*-equilibration) of systems in thermal contact through redistribution of heat energy, q = randomized energy $\rightarrow dU = T \cdot dS$.

Generally:
$$dU = T \cdot dS + w = T \cdot dS - P \cdot dV$$

2. Law RD: Entropy of Ideal Gases

Iso-thermalization (*T*-equilibration) of systems in thermal contact through redistribution of heat energy, q = randomized energy $\rightarrow dU = T \cdot dS$.

Generally: $dU = T \cdot dS + w = T \cdot dS - P \cdot dV$

(

$$T \cdot d\mathbf{S} = \left(\frac{\partial U}{\partial V}\right)_{T} dV + \left(\frac{\partial U}{\partial T}\right)_{V} dT + P \cdot dV$$

Ideal gas:
$$U = N(3/2)k_BT = only \ a \ function(T) \rightarrow \left(\frac{\partial U}{\partial V}\right)_T = 0$$

Ideal gas $\rightarrow dS = \left(\frac{\partial U}{\partial T}\right)_V \frac{dT}{T} + \frac{P}{T} \cdot dV \rightarrow dS = \left(\frac{\partial U}{\partial T}\right)_V \frac{dT}{T} + Nk_BT \cdot \frac{dV}{V}$

integrate DEq

Ideal Gas
@ equilibrium
$$S(V,T,N) = S_0(V_0,T_0,N) + N \cdot C_V \cdot Ln\left(\frac{T}{T_0}\right) + N \cdot R \cdot Ln\left(\frac{V}{V_0}\right)$$
Integration constant, initial state

Example 2: Entropy of Mixing

Separated Gases

Mixed Gases

 $V = V_1 + V_2 + V_3$

Dilute (ideal) gas type in separated V_i ; i = 1,2,3; all at same P, T. No external energy transfer.

Remove divisions -> spontaneous mixing occurs

 \rightarrow less ordered, more randomized energy $\rightarrow S \nearrow$?

Entropy change due to mixing :

$$\Delta S = S_{mix} - S_{unm} = R \cdot \left[Ln \,\Omega_{mix} - Ln \,\Omega_{unm} \right] = R \cdot Ln \left[\frac{\Omega_{mix}}{\Omega_{unm}} \right]$$

Plausible assumption : # states $\Omega_i \propto V_i$ i = 1, 2, 3

Gain by individual components

 $\Delta S_i = n_i \cdot R \cdot \ln\left(\frac{V}{V_i}\right) > 0 \qquad n_i = number of moles i$

Quantum Mechanics (particle-in-box, phase space): Smaller volumes→ fewer states

EoS: Entropy of Mixing

Separated Gases

Mixed Gases

S-gain by individual gas components $\Delta S_i = n_i \cdot R \cdot Ln\left(\frac{V}{V_i}\right) > 0 \qquad n_i = number \text{ of moles } i$

Entropy is extensive (additive). \rightarrow conponents add $\Delta S = -R \cdot \sum_{i} n_{i} \cdot Ln\left(\frac{V_{i}}{V}\right) > 0 \qquad S \nearrow$

total moles
$$n = \sum_{i} n_{i} \rightarrow \Delta S = -n \cdot R \cdot \sum_{i} \left(\frac{n_{i}}{n}\right) \cdot Ln\left(\frac{V_{i}}{V}\right)$$

Relative abundance (probability for) particle type i

 $p_{i} = \frac{n_{i}}{n} = \frac{V_{i}}{V} < 1$ $\Delta S = -n \cdot R \cdot \sum_{i} p_{i} \cdot Ln p_{i}$ *n* moles $N \text{ particles} \quad \Delta S = -N \cdot k_{B} \cdot \sum_{i} p_{i} \cdot Ln p_{i}$

Can use other "State Functions" to calculate entropy, all related by EoS

Entropy of Mixing: Example

One mole each of two gases, *A* and *B*, in the respective halves of a separated container at $P_A = P_B = 1$ atm, $T_A = T_B = 298K$ When the partition is removed, the gases will mix. No change in energy

Calculate the entropy gain or loss in the mixing of the two gases.

Total n = 2 moles; Mole fractions: $n_A/n = n_B/n = 0.5$.

Abundances, probabilities are $p_A = p_B = 0.5$

The entropy of mixing is given by

$$\Delta S_{mix} = -nR\left\{\frac{n_A}{n} \cdot Ln\left(\frac{n_A}{n}\right) + \frac{n_B}{n} \cdot Ln\left(\frac{n_B}{n}\right)\right\} = -2R\left\{0.5 \cdot Ln\left(0.5\right) + 0.5 \cdot Ln\left(0.5\right)\right\} = 11.5\frac{J}{K} > 0$$

Entropy is gained $\leftarrow \rightarrow$ mixing occurs spontaneously.

Mixing cannot be simply reversed \rightarrow Maxwell's Demon does not exist!

A Good Question

Q: The mixing of two gases at p = 1 atm and T=298K yields an entropy gain of

 $\Delta S_{mix} = 11.5 \text{kJ/K}$. How much heat will be generated, emitted or absorbed?

A: None. Because all gases are at same temperature, the mixing does not change energy. The mixing process is spontaneous and irreversible. An entropy gain of $\Delta S_{mix} = +11.5$ kJ/K at T =298K only means that $q_{irrev} < T \cdot \Delta S_{mix}$. Absence of heat, $q_{irrev} = 0$, is compatible with the Second Law TD.

Mixing cannot be simply reversed \rightarrow Maxwell's Demon does not exist!

De-Mixing by Maxwell's Demon

Carbon Capture and Sequestration

Unmixing CO₂ from directly captured atmospheric gas supply.

 \rightarrow \$94-\$232 per ton CO₂.

When CO_2 is delivered at 15

MPa, theoretical design requires either 8.81 GJ of natural gas, or 5.25 GJ of gas plus 366 kWhr of electricity, per ton of CO₂ captured.

→ Levelized cost per t-CO2 fromatmosphere ranges from \$94 to $232/t-CO_2$.A

Keith et al., A Process for Capturing CO₂ from the Atmosphere, Joule (2018), https://doi.org/10.1016/j.joule.2018.05.006

W. Udo Schröder 2021

Phenomen 1&2. LTD

Conclusion: 2nd Law of Thermodynamics

Define general thermodyn function $S(E) = constant \cdot Ln\Omega(E) \ge 0$; for $\Omega \ge 1$

 $S(E) = k_B \cdot Ln \Omega(E) \ge 0$

$$\Omega(E) = e^{S(E)/k_B} \ge 1$$

Equilibrated Systems Have Maximum Entropy.

Spontaneous Transitions Always Increase System Entropy.

$$S(V,T,N) = S_0(V_0,T_0,N) + N \cdot C_V \cdot Ln\left(\frac{T}{T_0}\right) + N \cdot R \cdot Ln\left(\frac{V}{V_0}\right)$$

Randomized internal energy : $\langle E \rangle = T \cdot S$

Processes with heat transfer $\Delta q \otimes T \approx \text{const can be reversed}$

Phenomen 1&2. LTD

- Work and other forms of energy Transfer and dissipation
- 1. & 2. Fundamental Laws of Thermodynamics
- Ideal-gas laws and simple processes
 Technological applications, cyclic engines
- Real gases equation of state

Technological applications

- Phase equilibria
- Free energy in chemical reactions
 - Thermochemistry, electrochemistry
- Kinetic theory of gases

Reading Assignments Weeks 11&12 LN V-VI:

Kondepudi Ch. 3 & 4 Additional Material

McQuarrie & Simon Ch. 5 & 6

