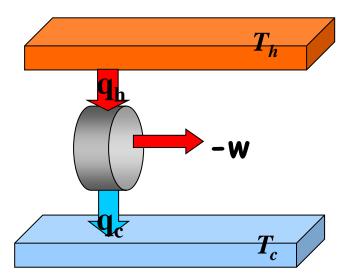
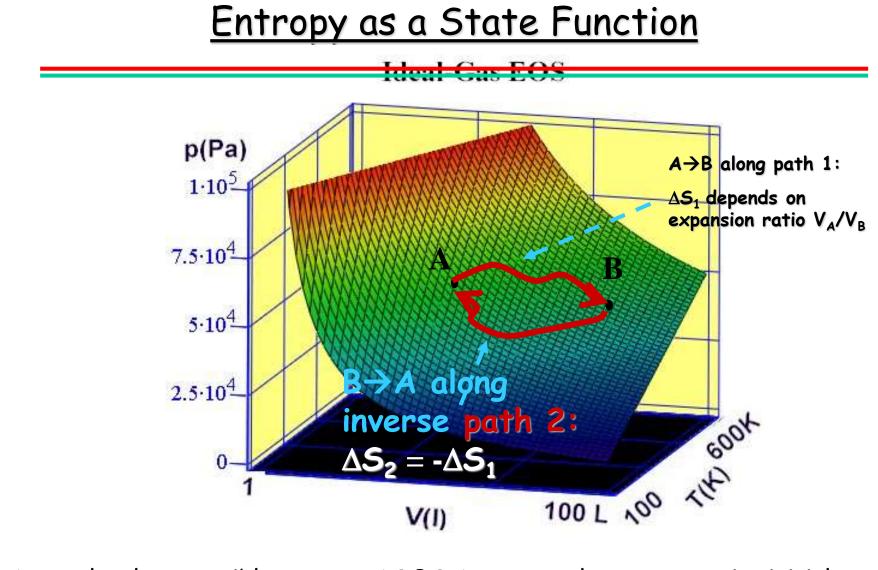
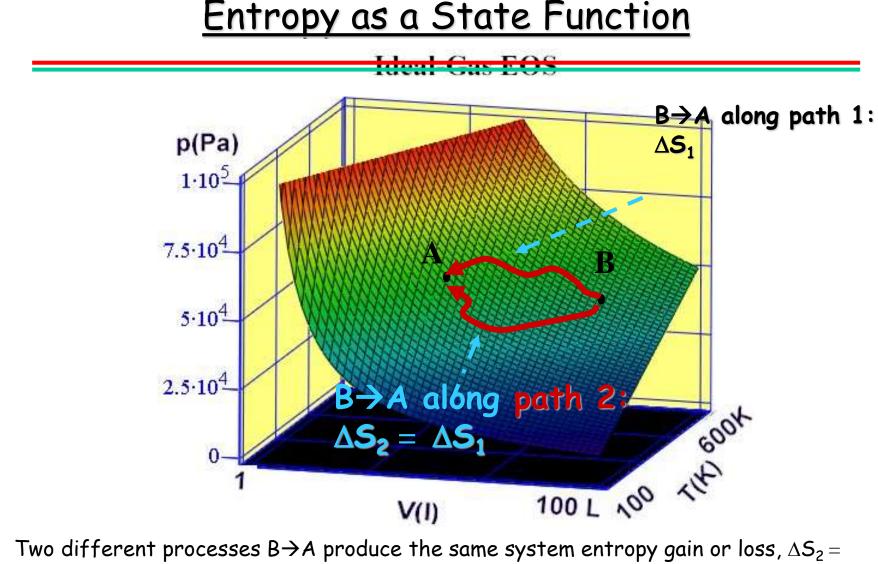


and the 2nd Law





A completely reversible process  $A \rightarrow B \rightarrow A$  returns the system to its initial state after a combination of different processes. In reversible processes, the system retains its entropy,  $\Delta S = 0$ , even if  $\Delta q_1 \boxtimes \Delta q_2$ .  $\boxtimes S = State Function$ 



Two different processes  $B \rightarrow A$  produce the same system entropy gain or loss,  $\Delta S_2 = \Delta S_1$ . Even though different amounts of heat are generated along different pathways  $B \rightarrow A$ , the entropy change  $\Delta S = q_{rev}/T$  is the same.  $\Delta S$  does not depend on the way on which a state is reached, even if it is an irreversible process. S is a function alone of the state of the system.

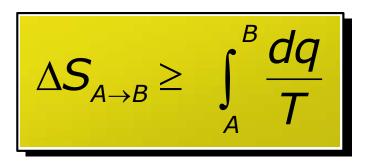
W. U. Schröder, 2021

Entropy 2nd LTD

#### Entropy in Thermodynamic Processes

Heat absorption by a system is maximum in reversible processes  $A \rightarrow B$ :

## $dS \geq dq/T > 0$



Always true (sign incl.) for thermodynamic states.

= for reversible (isothermal), adiabatic (q=0)

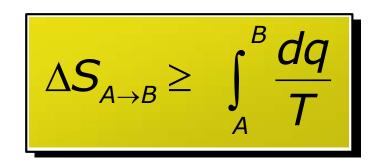
Rev. entropy gains by system are made up by surroundings

Entropy in Thermodynamic Processes

Heat **emission by a system** is minimum in reversible processes A → B:

**System:** 
$$q_{irrev} < q_{rev} = dS \cdot T < 0$$

## $dq/T \leq dS < 0$



Always true (sign incl.) for thermodynamic states.

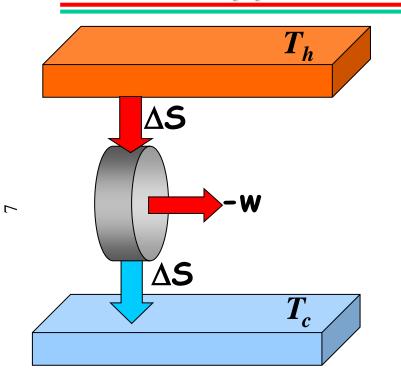
= for reversible (isothermal), adiabatic (q=0)

Rev. entropy losses by system are made up by surroundings

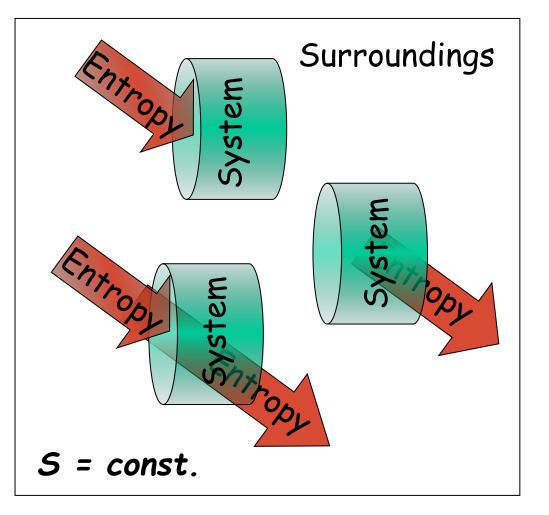
## Examples: Entropy Gains and Losses

Expansion/compression  $V_{initial} \rightarrow V_{final}$  $\Delta S_{A \to B} \geq \int_{A}^{B} \frac{dq}{T}$  **Isothermal compression (q = q<sub>rev</sub> < 0),** System: q<sub>rev</sub> > q<sub>irrev</sub> (irrev: more negative) Surr::  $q_{irrev} > q_{rev}$  (rev: more negative) System  $\frac{\Delta q}{T} \leq R \ln \left( \frac{V_{\text{final}}}{V} \right) = \Delta S_{\text{sys}} \leq 0 \text{ Loss}$ Isothermal expansion  $(q = q_{rev} > 0)$ , System:  $q_{rev} > q_{irrev}$  (irrev: less positive) Surr.:  $q_{irrev} > q_{rev}$  (rev: less positive) System  $0 < \frac{\Delta q}{T} \le R \ln \left( \frac{V_{\text{final}}}{V} \right) = \Delta S_{\text{sys}}$  Gain

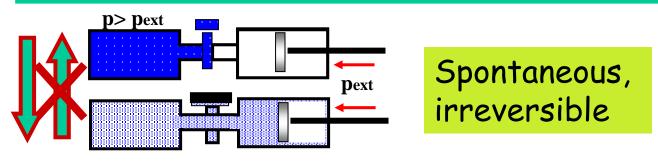
## **Entropy Balance in Reversible Processes**



Entropy is exchanged between system and surroundings. In a cyclic process, entropy flows through the system. Equilibrium between system and surroundings:  $T_{sys} = T_{surr}$ 



## **Irreversible Processes**



## Corollary:

If the total entropy is not conserved in a process  $A \rightarrow B$ ,  $AS - AS + AS \square O$ 

# $\Delta S = \Delta S_{sys} + \Delta S_{surr} ? 0$

## $A \rightarrow B$ must be irreversible !

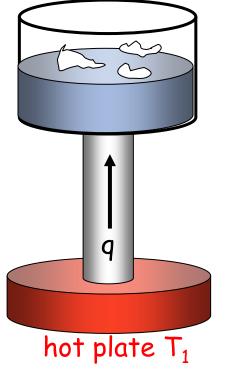
Do all irreversible processes have  $\Delta S \neq 0$ ,  $\Delta S < 0$ ,  $\Delta S > 0$ ?

Entropy 2nd LTD

## **Entropy in Irreversible Processes**

System is not in equilibrium with surroundings. Or System 1 and System 2 in contact are not in equilibrium with each other.

Example: Heat Convection/Conduction

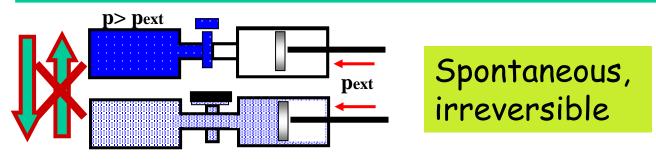


cold sink  $T_2 < T_1$ 

$$\Delta S_{A \to B} = \frac{q}{T_2} - \frac{q}{T_1} > 0$$
  
$$\frac{d}{dt} J_s > 0 \quad Entropy \ created$$
  
$$T_1 \xrightarrow{q} T_2 < T_1$$

Asymmetry of Nature "Arrow of Time"

## **Irreversible Processes**



Corollary: If the total entropy is not conserved in a process  $A \rightarrow B$ ,  $\Delta S = \Delta S_{sys} + \Delta S_{surr} > 0$ 

0

All irreversible  $A \rightarrow B$  increase entropy of system plus surroundings.

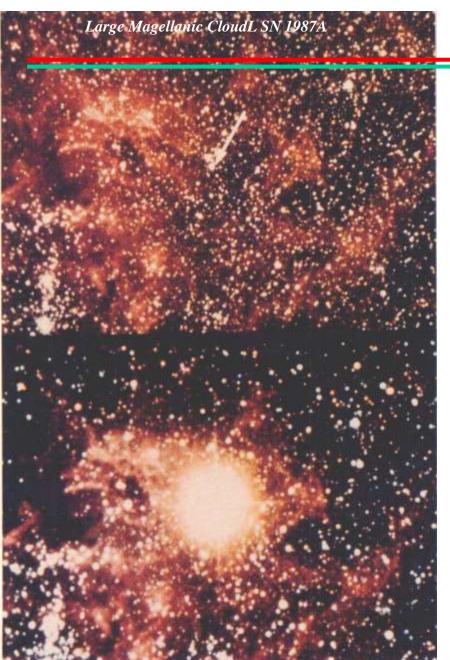
#### <u>The 2<sup>nd</sup> Law of Thermodynamics</u>

# The entropy of a system and its surroundings

# never decreases!

 $\Delta S_{A \to B} \geq$ 

Predicted here for non-interactive systems.



#### Limits to the 2<sup>nd</sup> Law?

Every empirical law has a range of applicability. How universal is the 2<sup>nd</sup> LTD? Universe is 14 Ba old. Started with Big Bang (thermal equil.?) but is now far from equilibrium.

 $\rightarrow$  Theory of Chaos, Synergetics, adaptive complex systems.

## Calculating the Entropy Change

Calculating the entropy in a (reversible) isothermal (T=const.) expansion/compression  $V_1 \rightarrow V_2$  is simple:

Since 
$$q_{rev} = \Delta U - w_{rev} = -w_{rev} = -RT \ln\left(\frac{V_1}{V_2}\right)$$

concentration

$$\Delta S = \frac{q_{rev}}{T} = -R \ln\left(\frac{V_1}{V_2}\right) = -R \ln\left(\frac{p_2}{p_1}\right) = -R \ln\left(\frac{c_2}{c_1}\right) c = 1/V$$

Entropy 2nd LTD

 $\mathcal{O}$ 

The entropy of a system increases, when it absorbs heat  $(q_{rev}>0)$ , expands  $(V_1 < V_2)$ , gets decompressed  $(p_1 > p_2)$ , or diluted  $(c_1 > c_2)$ . Spontaneous processes:  $\Delta S > 0$ .

## **Entropy Calculations**

Entropy change  $\Delta S = \Delta S(q_{rev}, T)$  depends on the heat  $q_{rev}$ and the ambient T at transfer. If T<sup>D</sup> const, isochoric pressurization if  $T_1 \rightarrow T_2 > T_1$ : integrate over  $dq_{rev} = C_V dT$  for V=const.

$$dS = \frac{dq_{rev}}{T}$$
  

$$\Delta S_{1\to 2} = \int_{T_1}^{T_2} \frac{C_V(T)}{T} dT$$
  

$$\Delta S_{1\to 2} = C_V \ln\left(\frac{T_2}{T_1}\right) \text{ for } C_V = \text{const.}$$

The entropy of a system increases, when it is heated  $(\Delta T>0)$  at V=const.

## **Entropy Calculations**

Entropy change  $\Delta S = \Delta S(q_{rev}, T)$  depends on the heat  $q_{rev}$ and the ambient T at transfer. If TP const, isobaric decompression if  $T_1 \rightarrow T_2 > T_1$ integrate over  $dq_{rev} = C_p dT$ 

> $dS = \frac{dq_{rev}}{T}$   $\Delta S_{1\to 2} = \int_{T_1}^{T_2} \frac{C_p(T)}{T} dT$  $\Delta S_{1\to 2} = C_p \ln\left(\frac{T_2}{T_1}\right) \text{ for } C_p = \text{const.}$

The entropy of a system increases, when it is heated ( $\Delta T > 0$ ) at p=const. Spontaneous processes:  $\Delta S > 0$ .

5

Entropy 2nd LTD

## <u>Example</u>

**Q**: By how much does the entropy of 2 moles of water vapor at normal pressure (1 atm) change, when it is heated from  $T_1 = 100^{\circ}C$  to  $T_2 = 150^{\circ}C$ .

## <u>Example</u>

**Q**: By how much does the entropy of 2 moles of water vapor at normal pressure (1 atm) change, when it is heated from  $T_1 = 100^{\circ}C$  to  $T_2 = 150^{\circ}C$ .

Hint: For water, C<sub>p</sub>= 36.4 J/Kmol.

### <u>Example</u>

**Q**: By how much does the entropy of 2 moles of water vapor at normal pressure (1 atm) change, when it is heated from  $T_1 = 100^{\circ}C$  to  $T_2 = 150^{\circ}C$ .

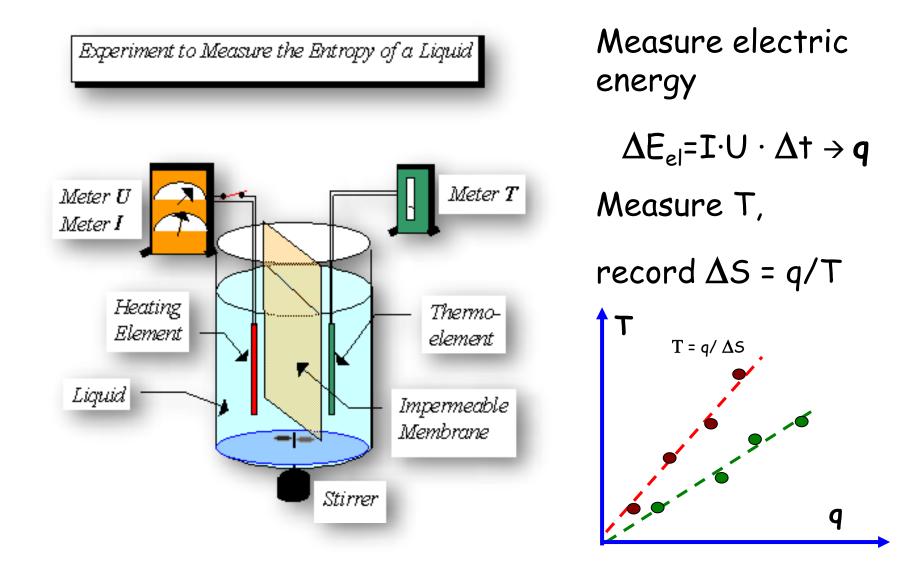
Hint: For water,  $C_p = 36.4 \text{ J/Kmol}$ .

A:  

$$\Delta S_{1\to2} = n \cdot C_p \int_{T_1}^{T_2} \frac{dT}{T} = n \cdot C_p \ell n \left(\frac{T_2}{T_1}\right) =$$

$$= 2moles \cdot 36.4 \frac{J}{Kmol} \cdot \ell n \frac{423}{373} = 9.16 \frac{J}{K} > 0$$





### Experimental Entropies: 3rd Law TD

| Substance       | Entropy (298 K, 1at)                      |
|-----------------|-------------------------------------------|
| Diamond         | 2.4 J K-1mol-1                            |
| Carbon          | 5.74J K-1mol-1                            |
| Water           | 69.9 J K <sup>-1</sup> mol <sup>-1</sup>  |
| Alcohol         | 160.7 J K <sup>-1</sup> mol <sup>-1</sup> |
| Oxygen (gas)    | 205.0 J K <sup>-1</sup> mol <sup>-1</sup> |
| CO <sub>2</sub> | 213.6 J K <sup>-1</sup> mol <sup>-1</sup> |

Experimental entropies are different for different states. Crystals with perfect lattice order have lowest entropy S, gases have highest.

Crystals with perfect lattice order close to T = 0Khave lowest entropy. All substances at T = 0K: S = 0 (T = 0K).

## Kelvin-Clausius Controversy

- *A (Kelvin):* No process is possible in which the <u>sole result</u> is the absorption of heat from a reservoir and its <u>complete conversion</u> into work.
- **B** (Clausius): No process is possible in which the <u>sole result</u> is the transfer of heat <u>from a cooler to a hotter</u> reservoir.

# Kelvin

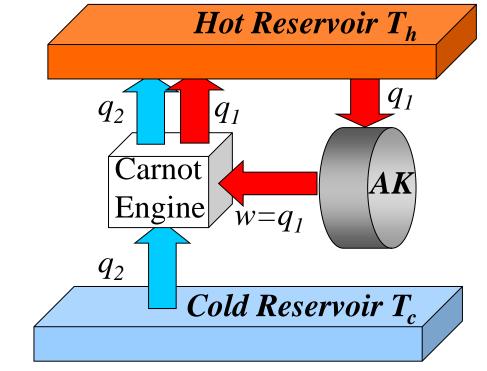
*A:* No process is possible in which the <u>sole result</u> is the absorption of heat from a reservoir and its <u>complete conversion</u> into work.

Construct an anti-Kelvin engine violating A

Absorbs heat  $q_1$  and converts it completely into work *w*.

Carnot E. transforms  $w \rightarrow q_1$ 

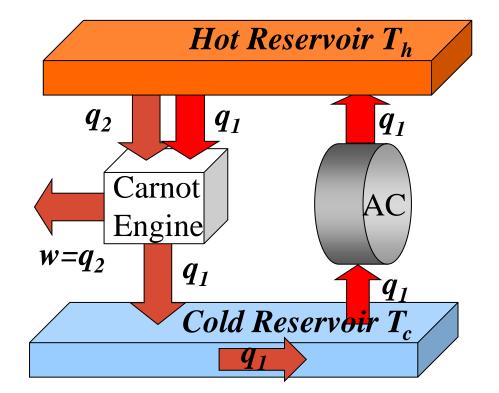
also transfers  $q_2$  from cold to hot reservoir, violating Clausius **B**.



## Clausius

**B:** No process is possible in which the <u>sole result</u> is the transfer of heat from a cooler to a hotter reservoir.

Construct an anti-Clausius engine violating B



Absorbs heat  $q_1$  from colder and transfers it completely to wormer reservoir.

Carnot E. transforms  $q_2 \rightarrow w$ 

Dumped  $q_1$  is recycled to hot reservoir, violating Kelvin A.

 $\neg \mathbf{B} \boxdot \neg \mathbf{A} \ \oslash \ \mathbf{A} \Leftrightarrow \mathbf{B}$ 

## The End

