The Undergraduate's Insider's Guide 2016 - 2017
The Undergraduate Chemistry Council is a student-run group of chemistry enthusiasts that aims to bridge the gap between students and faculty, while fostering a love of chemistry. We have monthly lunches with professors, conduct exciting (and oftentimes explosive) demonstrations to local K-12 students, and host peer research talks, just to name a few. We are an active chapter of the American Chemical Society Student Affiliates. This club is free to join and open to new members of any class year and experience level.

Log-on to Campus Club Connection to register at ccc.rochester.edu/organization/undergraduatechemistrycouncil or email Merjema Purak at jmpurak@u.rochester.edu for updates on current happenings!

A Word About the UCC...

The Undergraduate Chemistry Council is a student-run group of chemistry enthusiasts that aims to bridge the gap between students and faculty, while fostering a love of chemistry. We have monthly lunches with professors, conduct exciting (and oftentimes explosive) demonstrations to local K-12 students, and host peer research talks, just to name a few. We are an active chapter of the American Chemical Society Student Affiliates. This club is free to join and open to new members of any class year and experience level.

Log-on to Campus Club Connection to register at ccc.rochester.edu/organization/undergraduatechemistrycouncil or email Merjema Purak at jmpurak@u.rochester.edu for updates on current happenings!

What is this booklet about?

This booklet was designed as an informal guide for undergraduates considering a chemistry major at the University of Rochester. The material and comments are from chemistry majors and our faculty advisors. We believe the Chemistry Department at the University of Rochester is exceptional and wish to share this information with students who have an aptitude and interest in the chemical sciences.

This Insider’s Guide is filled with the insights of students who have “been there.” This booklet is revised yearly as other students (possibly you) provide insights and ideas to be shared with others.

In short, we hope you will join us and be part of one of the best departments on campus! We hope you will accept this booklet in the spirit it was written in and share our enthusiasm for the opportunities available. Most of all, we welcome your comments.

Please submit comments or recommendations for this booklet to:

Deb Contestabile
Administrative Assistant
Undergraduate Program & Development Office
Department of Chemistry
Hutchison Hall, Room 404D
email: ugradadm@chem.rochester.edu
For a student fresh out of high school, where most of the course selection was done for you, the difficult decisions involved in choosing a major, picking enjoyable elective courses, and putting together a program to suit your needs and interests can be a bit unnerving. The only basis you have for your decisions may be one or two high school courses in each science subject. Fortunately, the first two years of college are quite flexible and it is possible to take courses in a variety of fields before choosing a major.

A quick glance at the course requirements for majors in chemistry, biology, biochemistry, and chemical engineering will reveal similar course requirements for all, at least during the first two years. All of the aforementioned majors require at least two semesters each of mathematics and physics and four semesters of chemistry courses. Physics and mathematics majors can follow this general format as well. Thus, one plan of action may be to take courses in most of the previously mentioned fields and let the decision of choosing a major sit on the back burner until you have explored all of the options. A few hours spent with the course requirements for all science degrees will convince you of the common requirements and will hopefully relieve some of the anxiety associated with choosing a major.

If you are reading this as a sophomore or a junior and want to become a chemistry major, please see one of the undergraduate chemistry advisors (page 3). They can help you decide how to best arrange your schedule to fulfill the laboratory requirements and continue on as a chemistry major. Another option is to minor in chemistry. The requirements (see the official Undergraduate Bulletin (www.rochester.edu/bulletin) are identical to those for anyone pursuing any biology or chemical engineering degree, supplemented with two upper-level chemistry courses.

Your chemistry professors are perhaps your most indispensable resource for information about chemistry as a profession and the Undergraduate Chemistry Program at the University of Rochester. Talk to them. A member of the Undergraduate Studies Committee is a good start (p. 3), but also feel free to speak with other professors. Peer advisors, graduate students and postdoctoral students may also provide information and invaluable guidance about future careers. Planning a course load that does not cut off your options for majors, as well as discussing your interests and goals with your professors, will undoubtedly make your educational experience at the University of Rochester both enjoyable and profitable.
The Chemistry Undergraduate Studies Committee (USC) serve as academic advisors and handle undergraduate student concerns including declaration of a major or minor, petitions for waiver or substitution of program requirements, and other curriculum or program questions. Faculty listed below have primary responsibilities for undergraduate studies. All USC committee members are “authorized signatures” for required paperwork to declare a major or minor in chemistry. Petitions for transfer of credit (Course Approval Forms) should be directed to Deb Contestabile, the Undergraduate Program Coordinator.

In addition to the USC committee members, students may contact any of our other faculty or a Peer Advisor with questions. We also welcome you to stop by and visit the Undergraduate Studies Office (Hutch 404D) anytime during normal business hours.

Faculty Advisors

Prof. Joshua Goodman
Chair, Undergraduate Studies Committee
(585) 275-4891
joshua.goodman@rochester.edu
Hutchison 460
Mechanistic Organic Chemistry

Prof. James Farrar
(585) 275-5834
farrar@chem.rochester.edu
Hutchison B19
Dynamical studies of low energy ion-molecule reactions in the gas phase; imaging studies of collisions; photochemistry of size-selected ionic clusters.

Prof. Alison Frontier
(585) 275-2568
alison.frontier@rochester.edu
Hutchison 414
Synthetic organic chemistry; synthesis of bioactive natural products; pericyclic reactions; asymmetric catalysis; cationic cascades.

Dr. Ben Hafensteiner
(585) 275-1936
benjamin.hafensteiner@rochester.edu
Hutchison 124
General and Organic Chemistry

Prof. Thomas Krugh
(585) 275-4224
krugh@chem.rochester.edu
Hutchison 459
Biophysical Chemistry; structural analysis of biomolecules, energy minimization and molecular dynamics calculations

Prof. Wolf-Udo Schröder
(585) 275-8263
w.udo.schroeder@rochester.edu
Hutchison 466
Dynamics of Complex Nuclear Reactions at intermediate and high energies

Deb Contestabile
Administrative Assistant
Undergraduate Program & Development
(585) 276-3663
ugradadm@chem.rochester.edu
Hutchison 404D
In addition to our Undergraduate Studies Committee, students are encouraged to consult with one of our Chemistry Peer Advisors. Our current Peer Advisors are chemistry majors in their senior year and have gone through training with the College Center for Advising Services. They can help students with planning their program of study, or to make connections with faculty, review research opportunities, explore study abroad options as well as independent and interdisciplinary study. If they can’t answer your question, they are happy to point you in the right direction. You may also want to contact the College Center for Advising Services directly with any general questions at cascas@mail.rochester.edu.

Lauren Bolz is a senior majoring in Chemistry with clusters in Spanish and Economics. Lauren is currently completing her senior thesis in the Matson Lab working with heterobimetallic complexes, although she previously explored bioorganic synthesis through her research position in the Fasan Lab. During the spring of her junior year, Lauren studied abroad in Christchurch, New Zealand. She is also an e-board member of Alpha Phi Omega, our university’s co-ed community service fraternity. By the time she graduates, Lauren will have been a workshop leader for over ten courses within the Chemistry Department, which has helped her realize her goal to teach at the university level after pursuing a Ph.D. in Food Chemistry.

Gavin Piester is a senior pursuing a BS Biochemistry, a BA in Chemistry, and a minor in Music. He has been conducting research in the laboratory of Professor Noble at URMC where he investigates the molecular and cellular pathology of Krabbe disease with emphasis on translation to clinical treatment. Over the summer of 2016, Gavin was selected as a Pasteur Foundation Summer Intern and conducted research on mitochondrial DNA stability in Cockayne Syndrome at the Pasteur Institute in Paris, France. Previously, he studied self- and co-assembly in the Amyloid-β peptide in the laboratory of Professor Nilsson at UR and analysis of pesticides and toxins in foods at the New York State Department of Health. Gavin has been a Workshop Leader for Freshman Organic Chemistry I & II and Principles of Biochemistry as well as a Super Leader for Organic Chemistry I. Additionally, he is currently the President of the Society of Undergraduate Biology Students (SUBS) and the Undergraduate Musicians’ Council. Outside of science, Gavin is a varsity member of the Men’s Rowing Team and plays trumpet in the Symphony Orchestra. Gavin hopes to complete a MD/Ph.D. in Neuroscience and pursue translational research as a physician/scientist.
Choice of Undergraduate Degrees: B.A. and B.S.

Many students are concerned about the relative advantages of the Bachelor of Science and Bachelor of Arts degrees. The Undergraduate Bulletin (www.rochester.edu/bulletin) suggests that a B.S. is the way to go for those who wish to pursue a career in chemistry, and that the B.A. is appropriate for people considering a career in medicine or dentistry, for example. This is not always true. The B.A. requirements, when prudently supplemented, can also prepare one very adequately for graduate study in chemistry.

The simplest way to sort out which degree is best for you is to think about your career and educational goals. If your ambition is to attend medical, dental or law school, the B.A. degree will offer more flexibility in choosing other premedical/pre-dental courses. However, the B.A. can also be supplemented with senior research and perhaps a graduate course in chemistry and can adequately prepare one for a career in chemistry. The B.A. is also more appropriate when a student desires to have a double major, for example. The B.A. is constructed to encourage interdisciplinary studies. If you desire to get a job or attend a graduate program in chemistry immediately after college in the chemical industry, a B.S. program will suit your needs. Our B.S. degree program has additional requirements in chemistry and supporting sciences. It is also an American Chemical Society (ACS) approved program, which may provide some advantage in terms of employment.

The B.A. and the B.S. degree programs share a common curriculum for the first three semesters, and normally students declare their major sometime in their sophomore year. There’s more information regarding declaring a major online at: www.rochester.edu/college/sophomores/declare/artsandsciences.html.

Double Major/Double Degree Programs

Students who are interested in pursuing a double major or double degree are advised to consult the College website (www.rochester.edu/college/CCAS/AdviserHandbook/Majors.html) where it outlines course overlap rules and additional credit requirements.
B.A. Degree Requirements

The B.A. program makes fewer specifications at the advanced level than the B.S. degree and encourages a wider range of elective courses. It is particularly suitable for students with interdisciplinary scientific interests in the health professions, biology, physics, geological sciences, engineering or education. B.A. students may elect advanced courses in chemistry, including independent research, and can, thereby, create a curriculum best suited to their individual interests.

REQUIREMENTS
Total: at least 39 credit-hours in chemistry, and at least 59 credit-hours overall

☐ General Chemistry (5 credits)
 * CHM 131 - Chemical Concepts I (or equivalent AP credit)

☐ Organic Chemistry (9 credits)
 Standard Sequence
 * CHM 203 - Organic Chem. I
 * CHM 204 - Organic Chem. II
 * CHM 207 - O. Chem. Lab II (1 cr.)
 OR
 Freshman Organic Sequence
 * CHM 171 - Freshman Organic Chem. I
 * CHM 172 - Freshman Organic Chem. II
 * CHM 173 - Freshman O. Chem. Lab II

☐ Three of the following theory courses (12-13 credits)
 * CHM 132 - Chemical Concepts II
 * CHM 211 - Inorganic Chemistry
 * CHM 251 - Physical Chemistry I
 * CHM 252 - Physical Chemistry II

☐ Two of the following laboratory courses (6-8 credits)
 * CHM 210 - Honors Organic Chemistry Lab (2 cr.)
 * CHM 231 - Chemical Instrumentation
 * CHM 232 - Molecular Spectroscopy
 * CHM 234 - Advanced Laboratory Techniques
 * CHM 244W - ANSEL (Advanced Nuclear Science Education Lab)

☐ Two additional 200-level (or higher) chemistry courses or other science courses approved by the Undergraduate Studies Committee (8 credits)
 * Note: No more than four credits may be from laboratory courses, and no credits can be from independent research.

☐ Satisfaction of the upper-level writing requirement

☐ Mathematics Coursework (12-16 credits)
 MTH 140 Sequence (12 cr)
 * MTH 141, MTH 142, and MTH 143 (Calculus I, II, & III)
 OR
 MTH 160 Sequence (8 cr)
 * MTH 161, and MTH 162 (Calculus IA & IIA)
 * MTH 165/MTH 163, any (or any 200 level mathematics course, or a course in computer science (CSC 161, formerly 170, or CSC 171) or statistics (STT 201, STT 211, or STT 212)

☐ Physics Coursework (8 credits)
 PHY 113-114 Sequence (8 cr)
 * PHY 113, and PHY 114 (General Physics I & II)
 OR
 PHY 121-122 Sequence* (8 cr)
 * PHY 121, and PHY 122 (Mechanics and Electricity & Magnetism)/or the Honors Sequence of Mechanics and Electricity & Magnetism, PHY 141-142
For a B.A. in Chemistry

<table>
<thead>
<tr>
<th>Regular Sequence</th>
<th>Freshman Organic Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>CHM 131</td>
<td>CHM 132</td>
</tr>
<tr>
<td>MTH 141</td>
<td>MTH 142</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Second Year</td>
<td></td>
</tr>
<tr>
<td>CHM 203</td>
<td>CHM 204</td>
</tr>
<tr>
<td>CHM 207</td>
<td>CHM 210W</td>
</tr>
<tr>
<td>MTH 143/Elect</td>
<td>MTH 163/165</td>
</tr>
<tr>
<td>PHY 113</td>
<td>PHY 114</td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
</tr>
<tr>
<td>CHM 211</td>
<td>CHM 232/234</td>
</tr>
<tr>
<td>CHM 251</td>
<td>CHM 252</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
</tr>
<tr>
<td>CHM 231</td>
<td>CHM 234/2XX</td>
</tr>
<tr>
<td>200-level Sci</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

First Year	
CHM 171	CHM 172
CHM 173	CHM 210W
MTH 161	MTH 162
Elective	Elective/PHY 121
Elective	Elective
Second Year	
CHM 211/132	CHM 234
PHY 122/113	PHY 123/114
MTH 163/165	Elective
Elective	Elective
Third Year	
CHM 251	CHM 232/ 234
Elective	Elective
Elective	Elective
Elective	Elective
Fourth Year	
CHM 231	CHM 262/200-level Sci
200-level Sci	Elective
Elective	Elective
Elective	Elective

Notes:

- The Freshman Organic sequence is designed for first year students with good preparation in chemistry (e.g., two years of general chemistry and an Advanced Placement score 4 or 5, or equivalent preparation). This sequence fast tracks students to more advanced chemistry courses and the fulfillment of degree requirements in other disciplines.

- B.A. candidates considering employment in the chemical profession or graduate work in chemistry should include: CHM 210, 211, 231, 232, 251, and 252 in their curriculum.

- Approved 200-Level Courses for the Chemistry Program that will satisfy the requirement of Two additional 200-level (or higher) chemistry courses (8 credits) are listed online at: www.chem.rochester.edu/undergrad/200lvl.php. No more than four credits may be from laboratory courses, and no credits can be from independent research. Permission of the Undergraduate Studies Committee must be granted to use any course not on this list.

- Students should speak with a chemistry advisor to tailor their programs specifically to their career goals. Particular electives that are not included in the chemistry curriculum may be required for some graduate programs.

- Students who are interested in pursuing a double major or double degree, are advised to consult the College website which outlines the course overlap rules and additional credit requirements.

- Students who are interested in pursuing pre-med and allied health professions are advised to contact a Health Professions Advisor at URhealthprofessions@rochester.edu.
B.S. Degree Requirements

The B.S. program is designed primarily for students who anticipate professional careers in chemistry and related sciences. The program provides the range of knowledge, skills, and experience required for work as a professional chemist or for entry into graduate studies in chemistry. The fundamental work is completed by the end of the third year, leaving the senior year free for graduate-level coursework and a full year of independent research with one of the department faculty. The B.S. program that includes a biochemistry course meets all of the requirements for an American Chemical Society approved degree.

REQUIREMENTS
Total: at least 55 credit-hours in chemistry, and at least 85 credit-hours overall

☐ One General and Organic Chemistry Sequence (Standard or Freshman Organic Sequence - 16-21 credits)
 - **Standard Sequence**
 * CHM 131 - Chemical Concepts I (or AP equiv.)
 * CHM 132 - Chemical Concepts II
 * CHM 203 - Organic Chem. I
 * CHM 204 - Organic Chem. II
 * CHM 207 - O. Chem. Lab II (1 cr.)
 * CHM 210 - Honors Org Chem Lab II (2 cr.)
 - **Freshman Organic Sequence**
 * CHM 131 - Chemical Concepts I (or AP equiv.)
 * CHM 171 - Freshman Organic Chem. I
 * CHM 172 - Freshman Organic Chem. II
 * CHM 173 - Freshman O. Chem. Lab II
 * CHM 210 - Honors Org Chem Lab II (2 cr.)

☐ All of the following theory courses (20 credits)
 * CHM 211 - Inorganic Chemistry
 * CHM 251 - Physical Chemistry I
 * CHM 252 - Physical Chemistry II
 * CHM 262 (or BIO 250) - Biochemistry
 * Four credits of 400-level chemistry coursework

☐ All of the following laboratory courses (12 credits)
 * CHM 231 - Chemical Instrumentation
 * CHM 232 - Molecular Spectroscopy
 * CHM 234 - Advanced Laboratory Techniques (or CHM 244W/PHY 245W - ANSEL, Advanced Nuclear Science, Education Lab, or an approved laboratory course in another science department)

☐ Senior Thesis Research CHM 393 (8 credits)

☐ Satisfaction of the upper-level writing requirement

☐ Mathematics Coursework (16-20 credits)
 - **MTH 140 Sequence (12 cr)**
 * MTH 141, MTH 142, and MTH 143 (Calculus I, II, & III)
 - **MTH 160 Sequence (8 cr)**
 * MTH 161, and MTH 162 (Calculus IA & IIA)
 * MTH 163 Ordinary Differential Eq / or MTH 165 Linear Alg & Diffntl Eq (4 cr)
 * MTH 164 / or any 4 credit 200 level mathematics course, or a course in computer science - CSC 161, formerly 170, or CSC 171, or statistics STT 201, STT 211, or STT 212 (4cr)

☐ Physics Coursework (8 credits)
 - **PHY 113-114 Sequence (8 cr)**
 * PHY 113, and PHY 114 (General Physics I & II)
 - **PHY 121-122 Sequence* (8 cr)**
 * PHY 121, and PHY 122 (Mechanics and Electricity & Magnetism)/or the Honors Sequence of Mechanics and Electricity & Magnetism, PHY 141-142

*It is recommended for BS students to take the PHY 121 - 123 series.
B.S. Sample Program of Study

For a B.S. in Chemistry

<table>
<thead>
<tr>
<th>Regular Sequence</th>
<th>Freshman Organic Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
</tr>
<tr>
<td>CHM 131</td>
<td>CHM 171</td>
</tr>
<tr>
<td>MTH 161</td>
<td>CHM 172</td>
</tr>
<tr>
<td>Elective</td>
<td>MTH 161</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>First Year</td>
</tr>
<tr>
<td>CHM 132</td>
<td>MTH 162</td>
</tr>
<tr>
<td>PHY 121</td>
<td>Elective</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Second Year</td>
</tr>
<tr>
<td>CHM 203</td>
<td>CHM 204</td>
</tr>
<tr>
<td>CHM 207</td>
<td>CHM 210W</td>
</tr>
<tr>
<td>MTH 163/165</td>
<td>PHY 123/114</td>
</tr>
<tr>
<td>PHY 122/113</td>
<td>MTH/CSC/STT</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Third Year</td>
</tr>
<tr>
<td>CHM 211</td>
<td>CHM 234/244</td>
</tr>
<tr>
<td>CHM 231</td>
<td>CHM 232</td>
</tr>
<tr>
<td>CHM 251</td>
<td>CHM 252</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Fourth Year</td>
</tr>
<tr>
<td>CHM 393</td>
<td>CHM 393</td>
</tr>
<tr>
<td>400-level CHM</td>
<td>400-level CHM</td>
</tr>
<tr>
<td>Elective</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Notes:

- The Freshman Organic sequence is designed for first year students with good preparation in chemistry (e.g., two years of general chemistry and an Advanced Placement score 4 or 5, or equivalent preparation). This sequence fast tracks students to more advanced chemistry courses and the fulfillment of degree requirements in other disciplines.

- CHM 234 may be replaced by CHM 244W (ANSEL) or an Approved Laboratory Course in another science department (www.chem.rochester.edu/undergrad/200lvl.php).

- Eight credit hours of CHM 393 (senior research) are required for a B.S. degree. BS Students must prepare a senior research thesis, and have the thesis read and approved by the research adviser and a second faculty member in Chemistry.

- At least four credits of a 400-level chemistry course may be taken anytime during the junior or senior year.

- It is recommended for students to take the PHY 121 - 123 series. The sequence begins in the spring with PHY 121.

- Students should speak with a chemistry advisor to tailor their programs specifically to their career goals. Particular electives that are not included in the chemistry curriculum may be required for some graduate programs.

- Students who are interested in pursuing a double major or double degree, are advised to consult the College website which outlines the course overlap rules and additional credit requirements.
The Chemistry Department provides a variety of opportunities for undergraduates to participate in research programs during the academic year and the summer. Faculty members welcome undergraduates in their research groups and usually arrange a close collaboration with graduate students and postdoctoral fellows. These symbiotic interactions provide opportunities for students to work with the latest equipment and ideas in modern chemical science, in an environment that provides close mentoring and support.

Senior Research (CHM 393), can be the most rewarding and fulfilling course that you take at the University of Rochester. It is required for the B.S. degree and optional for the B.A. degree. Although two semesters of CHM 393 are specified as being Senior Research, any undergraduate may work with a professor as part of his/her research team during their Freshman, Sophomore, or Junior years. Often this is done as Independent Research (CHM 395).

To start, you need to find out what kind of chemistry appeals to you. Then, speak directly with the professor who does that kind of research to ask if there are openings. Showing an interest in the group’s work helps a lot! To find out the areas in which professors are working, it is helpful to see the research and teaching interests pages located in this document, and on our website at www.chem.rochester.edu/faculty.

Once you have narrowed your field of interest, the next step is to talk with the professors. They can give you a better idea of what they are doing and what you may be able to do. They may suggest that you attend one of their “group meetings” to find out what their group is about. If you decide that you like the area of research, you and the professor can devise an individual research plan and you can begin your work.

A semester of research is worth four credits, whether registered as CHM 395, Independent Study, or CHM 393, Senior Research. You should plan on spending at least the equivalent of two afternoons (eight hours) a week in the lab. Most people find themselves spending far more time than this, because the work is fun and the atmosphere is stimulating. The basis for determining your grade for the research course is worked out between the student and the professor as part of registration for independent study or senior research.

The actual research can be both rewarding and frustrating. Sometimes it is exciting, and other times it will drive you crazy; but at all times it teaches you to work independently and gives you an excellent idea of what academic research is all about. Currently, many Chemistry seniors, both B.S. and B.A. candidates, are conducting research with professors. It is extremely easy to do research at the University of Rochester, but you must make the first move.
The Chemistry Department also provides support for undergraduate students from Rochester and other institutions during the summer, using funds from a variety of sources. Rochester is a National Science Foundation (NSF) Research Experience for Undergraduates (REU) site, providing funding for eight students per summer from other institutions along with funding for University of Rochester students. UR students are also supported by REACH funds from the Career Center and by research grants to faculty.

In 2015, the Department also inaugurated an International Summer Fellowship Program designed to provide outstanding undergraduates in Chemistry from all over the world the opportunity to conduct first class summer research at the University of Rochester.

Summer research students have their own research projects, a specific faculty advisor and a specific day-to-day graduate student or postdoctoral mentor. Everybody participates in a weekly group meeting, reporting to each other on their research projects and results in oral, poster, and written form. Discussions of careers, graduate work, and scientific ethics are also part of the experience.

Research projects are available across the broad landscape of contemporary chemical research: structure, mechanism, dynamics, synthesis, spectroscopy and theory; inorganic, organic, organometallic, physical, biological, polymer, nuclear and environmental chemistry. In addition, there are special research lectures by scientists from the University and industry.

For more information on the summer undergraduate research programs, as well as application forms and deadline dates, please see our website at: www.chem.rochester.edu/undergrad/summer.php, or contact:

Marguerite Weston
Hutchison Hall, Room 450,
email: weston@chem.rochester.edu
or summer@chem.rochester.edu
Boeckman, Robert K., Marshall D. Gates Professor; Ph.D. 1971, Brandeis University. Total synthesis of alkaloids, terpenes, antibiotics, and antitumor agents; development of new synthetic methodology including the asymmetric synthesis methods involving the Diels-Alder reaction, the Claisen-retro-Claisen and other reactions; applications of conformational theory to the development of stereocontrolled organic reactions.

Bren, Kara L., Professor; Ph.D. 1996, California Institute of Technology. Bioinorganic and biophysical chemistry: engineered metalloprotein and metallolipopeptide analysis for solar fuels, biological and nanotechnological systems for solar energy conversion, heme protein structure and function, protein dynamics.

Dinnocenzo, Joseph P., Professor; Ph.D. 1983, Cornell University. Chemistry of organic ion radicals; mechanistic and physical organic chemistry; design and testing of new photoresponsive polymeric materials.

Eisenberg, Richard, Professor; Ph.D. 1967, Columbia University. Inorganic and organometallic chemistry; complexes of the platinum group elements (PGE’s); homogenous catalysis using metal complexes; oxidative addition and bond activation chemistry, photochemistry of platinum group element complexes; transition metal hydrides; NMR effects in hydrogenation reactions; environmental effects of PGE’s.

Farrar, James M., Professor; PhD. 1974, University of Chicago. Dynamical studies of low energy ion-molecule reactions in the gas phase; imaging studies of collisions; photochemistry of size-selected ionic clusters.

Fasan, Rudi, Associate Professor; PhD. 2005, University of Zurich. Bioorganic chemistry and chemical biology; biomolecular engineering; chemoenzymatic synthesis. Current interests include development of chemobirosynthetic strategies to construct and evolve macrocyclic compounds for modulating protein-protein interactions and asymmetric catalysis, and development of enzyme engineering and chemoenzymatic methods for functionalization of aliphatic C-H bonds in complex molecules.

Franco, Ignacio, Assistant Professor, Ph.D. 2007, University of Toronto. Physical and Theoretical Chemistry. Theory and computation as applies to dynamical processes occurring at the nanoscale; Control over the behavior of matter by means of external stimuli; Laser control of electronic properties and dynamics; Electronic decoherence in molecules; Theory and simulation of single-molecule pulling processes; Novel spectroscopies and control in single-molecule junctions.

Frontier, Alison J., Professor, PhD. 1999, Columbia University. Synthetic organic chemistry; synthesis of bioactive natural products; pericyclic reactions; asymmetric catalysis; cationic cascades.

Goodman, Joshua L., Professor; Ph.D. 1984, Yale University. Organic chemistry: use of two complementary techniques, nanosecond laser flash absorption spectroscopy and pulsed time-resolved photoacoustic calorimetry to observe transient reaction intermediates produced following an initial photochemical event.

Hafensteiner, Benjamin, Faculty lecturer; Ph.D. 2008, The Scripps Research Institute. Chemical education; total synthesis of natural products; organic synthesis; reaction invention and investigation; cascade reactions.

Huo, Pengfei, Assistant Professor; Ph.D. 2011, Boston University. Physical and Theoretical Chemistry, Ab-initio dynamics for understanding chemistry and photo physics of solar energy conversion.
Jones, William D., C.F. Houghton Professor; Ph.D. 1979, California Institute of Technology. Mechanisms of reactions of transition metal organometallic compounds; activation of carbon-hydrogen, carbon-carbon, and carbon-fluorine bonds by transition metal complexes; transition metals as catalysts for the desulfurization of thiophenes in oil.

Knowles, Kathryn, Assistant Professor; Ph.D. 2013, Northwestern University. Inorganic materials chemistry; synthesis and characterization of colloidal nanocrystals and nanostructured thin films; investigation of structure-function relationships between surface chemistries/morphologies and photoelectrochemical behavior. Techniques include spectroelectrochemistry, photoconductivity, and time-resolved optical spectroscopy.

Krauss, Todd D., Professor; Ph.D. 1998, Cornell University. Physical chemistry; synthesis and characterization of nanometer scale materials and devices, and mechanisms of protein folding, studied with single molecule photoluminescence spectroscopy, atomic force microscopy, ultrafast and nonlinear optical spectroscopy. Nanotechnological approaches to solar energy conversion and solar fuels production.

Krugh, Thomas R., Professor; Ph.D. 1969, Pennsylvania State University. Biophysical chemistry; structural analysis of biomolecules from two-dimensional NMR, circular dichroism, fluorescence, and UV-visible spectroscopies, along with energy minimization and molecular dynamics calculations.

Matson, Ellen, Assistant Professor; Ph.D. 2013, Purdue University. Inorganic and Organometallic Chemistry. Probing cooperative reactivity between non-traditional ligand platforms and first-row transition metals, specifically their ability to facilitate chemical transformations of industrial, environmental and biological significance.

McCamant, David W., Associate Professor, Ph.D. 2004, University of California, Berkeley. Ultrafast vibrational spectroscopy of structural dynamics in photochemistry, vibrational coupling and relaxation; structural rearrangements and relaxation mechanisms in photo-excited nucleic acids; Ultrafast energy and electron transfer processes relevant for solar energy systems.

Neidig, Michael, Wilmot Assistant Professor of Chemistry; Ph.D. 2007, Stanford University. Physical-inorganic chemistry and catalysis; elucidation of structure and bonding in non-precious metal catalysts through inorganic spectroscopic methods; studies of reaction intermediates and mechanisms of transition metal catalysis; non-precious metal organo-metallic, biological and heterogeneous catalysis.

Nilsson, Bradley L., Associate Professor; Ph.D. 2003, University of Wisconsin. Bioorganic chemistry and chemical biology; study of pathogenic amyloid self-assembly in processes relevant to Alzheimer’s disease and HIV infection; design and synthesis of novel self-assembled peptides as materials for biological applications.

Schröder, Wolf-Udo, Professor, Ph.D. 1971, Technical University of Darmstadt, Germany. Basic and applied nuclear science: Transport and relaxation processes in nuclear reactions, thermodynamics of hot atomic nuclei. Laser induced ion acceleration and thermo-nuclear reactions. Radio-tracers in tritium transport and nuclear forensics. Radiation detector instrumentation.

Turner, Douglas H., Professor; Ph.D. 1972, Columbia University. Biophysical chemistry: nucleic acid structure and function, prediction of RNA structure from sequence, RNA folding, influenza RNA and therapeutics to target RNA.

Weix, Daniel J., Associate Professor; Ph.D. 2005, University of California, Berkeley. Catalysis: organic methods development; study of organometallic mechanisms; development of multimeric and multimetallic catalyst approaches. Direct reductive coupling of organic halides with electrophiles, C-C and C-X bond-forming reactions, functionalization of strong bonds.
Teaching Opportunities

There are several ways for you to become actively involved in the teaching programs in the department as a recitation or laboratory teaching assistant or as a Workshop leader. These positions offer you opportunities to put your knowledge to work to help others learn, to develop new communication and leadership skills, and to test out your interest in teaching. In addition you will find that you develop new relationships with the faculty, the department, and the College. These are paying jobs, so you can start to get some financial rewards from your studies.

The Chemistry Department is the leader in the College supported Workshop Program. There are opportunities to lead workshops in general chemistry, organic chemistry, and in some advanced courses. Most Workshop leaders also earn credit in CAS 352, Issues in Group Leadership, and CAS 355 Group Leadership Seminar. Teaching Assistantships and Workshop leader positions are available in both semesters and in the summer. Applications are available in the department office. Workshop leader positions are by invitation, but you should not hesitate to make your interests known to faculty teaching workshop courses.

Considering a career in teaching? The University of Rochester now offers the Robert Noyce Scholarship Program for Math & Science Teachers through our Warner School of Education. Noyce scholars participate in high-quality programs leading to a master’s degree and New York State certification to teach in mathematics, biology, chemistry, physics, and earth science in grades 7-12. The program can be completed in 15 months by full-time students who start in the summer. The Warner School also offers a Fifth Year in Teaching Scholarship for University of Rochester undergraduates, which enables a master’s degree with only one extra year of study. For more information on both of these innovative programs, visit www.warner.rochester.edu.

Undergraduate Employment Opportunities

There are a number of employment opportunities for undergraduates within the Chemistry Department. These positions are not only modestly financially rewarding but are also educational and provide good work experience. Positions are available year-round for those with an inclination to work and the initiative to ask. Both clerical and technical positions are available.

The most common type of employment offered by the Chemistry Department is the job of Teaching Assistant as mentioned above. Undergraduates serve as TA’s in recitations, workshops, and laboratories. Applications for TA jobs can be obtained from Donna Dolan, in Hutchison Hall 404C, the semester before the course you want to TA is scheduled. Fill out the application and return it to her. If you are selected, you will be contacted. Chemistry courses are also taught in the summer, so a few TA’s are needed during this time.
The Carlson Science and Engineering Library is located in the Computer Studies Building and is attached to Hutchison Hall. It includes most chemistry books and older journals, as well as books in related subjects such as biology, computer sciences, and engineering. During the school year the Library is open Monday-Thursday 8:00 a.m. - 2:00 a.m., Friday 8:00 a.m. - midnight, Saturday 10:00 a.m. - midnight and Sunday 11:00 a.m. - 2:00 a.m.. Up-to-date information about the Library is available at: www.library.rochester.edu/carson

The Chemistry Resources section points to current chemistry journals, chemistry databases for finding articles, electronic reference resources, information about careers and jobs, properties and substances, and other web resources: libguides.lib.rochester.edu/CHM.

The Chemistry Librarian, Sue Cardinal, and other library staff are dedicated to working closely with students and faculty to create an outstanding educational experience. Electronic and print versions of books, journals, and search engines required for chemistry courses and research are actively purchased or subscribed to. If the Library does not have immediate access to a needed journal or book, copies can be obtained very quickly through interlibrary loan at no cost to the student. Students are welcome to suggest books and journals for the Librarian to purchase or subscribe to.

Sue Cardinal collaborates with faculty when courses have assignments that require information searching and management. She posts a list of useful library resources for each course to libguides.lib.rochester.edu/CHM. Beginning in the student’s first year, she teaches students about relevant resources and information seeking skills in their classes. She makes appointments to assist individuals with library research. Students learn which reference books and websites to use to answer specific questions and learn the optimum strategies for finding properties (melting point, spectra, dielectric constants, etc.), syntheses, and other information needed to plan experiments. This includes learning to search for substances that exactly match a drawn structure or that contain a specified subset of bonds and atoms, as well as finding these substances as part of reactions. Students learn to use databases including SciFinder (Chemical Abstracts), Reaxys, Science Citation Index Expanded, Medline, and resources on the internet. Students are well prepared for their professional careers as a result of four years of working closely with the Chemistry Librarian and the excellent access to books, journals, and relevant web resources. Chemistry graduates also gain top-notch information searching skills.

Current text books are often kept “on reserve” at the Library’s circulation and Reserve Desk on the 2nd floor. Some “reserve” items such as problem sets or practice exams are available online and easily obtained from any University computer. Photocopiers are located on the 1st and 2nd floors. Computers are available on all three floors. The reference desk is located on the 1st floor, along with the reference books, and is the best place to ask questions. Students can also ask questions via a chat box on the Library’s web page.

The Library staff is friendly, knowledgeable, and enjoys working with students and faculty. They staff the Reference Desk during the day on Monday-Thursday until 6:00 p.m., Friday until 5:00 p.m. and Saturday and Sunday afternoons. The staff includes six science librarians, two support staff as well as Trina Lowery, who runs the Circulation Desk, and Delores Baxter, who keeps reserve reading assignments current. Each librarian specializes in a specific science subject and several have science degrees.
Seminars

Interested students are encouraged to attend departmental seminars which are given by faculty, graduate students and outside speakers. These seminars are on topics not directly covered in undergraduate courses. Although the topics are quite advanced, the seminars can be instrumental in providing opportunities for undergraduates to meet professors and non-faculty scientists. In addition, students can develop a feel for modern chemistry research and terminology. These seminars can be great experience for an undergraduate. To find out the date, time, and subject of the department seminars check the weekly announcement bulletins on the fourth floor and the Chemistry web site. Scheduling of seminars loosely follows this pattern:

- Monday, 4:00 p.m. Physical/Inorganic Chemistry
- Wednesday, 12:00 p.m. Chemistry Colloquium
- Friday, 9:30 a.m. Organic Chemistry

Undergraduate Chemistry Awards

While the main reason for studying chemistry is for insight and understanding, distinctions are awarded to those students who have demonstrated exceptional potential for a contribution to chemistry. The awards are presented by both the Department of Chemistry and the College of Arts and Sciences at the end of each year at graduation or in the fall at the first chemistry department get together. Along with the award, there is generally included some type of prize, either cash, book, a journal subscription, or a membership in a chemistry organization.

Among the awards presented by the Chemistry Department are the ACS Division of Inorganic Chemistry (presented to a sophomore, junior, or senior) and the Carl A. Whiteman Teaching Awards (given to seniors and juniors). Among the awards presented to seniors only are the Dr. E.W. and Maude V. Flagg Awards, John McCreary Memorial Prize, ACS Rochester Section Award, and Chemistry Department Awards. The Department’s Undergraduate Studies Committee chooses the recipients of these awards from individuals nominated by individual faculty members and then approved by the entire faculty.

There are also two college-wide awards that could be given to Chemistry majors who are female. The Janet Howell Clark Prize is presented to a senior while the Catherine Block Memorial Fund Prize is awarded to a junior. Both prizes are awarded to women who show promise and potential for achievement in the natural or physical sciences.

None of these awards require applications, interviews, or the like. They are presented to individuals who show extraordinary effort and achievement in their work in chemistry. The only way to win such an award is to keep a standard of academic excellence, a high degree of intellectual curiosity, and, above all, to get the most enjoyment you can from the challenge of studying chemistry.

For a complete listing of Undergraduate awards and recipients, please see our website listing at: www.chem.rochester.edu/events/awards.
Requesting Transfer Credit

Elective credit can usually be granted by the College Center for Advising Services.

To request transfer credit for chemistry courses, students should provide the course description from either the course catalog or website (preferred) of the course they plan to take, or have already taken elsewhere, to the chemistry Undergraduate Studies Coordinator (ugradadm@chem.rochester.edu), or to the chemistry faculty member assigned to handle “Approval of Transfer Credit” as listed on the departmental Undergraduate Studies Committee web page (www.chem.rochester.edu/undergrad/committee.php). The syllabus may also be requested. Please see our general policies regarding General Chemistry and Organic Chemistry transfer credit (www.chem.rochester.edu/undergrad/policies.php). It is recommended that students obtain approval of transfer credit before taking a course elsewhere when possible.

Students must also complete a Course Approval Form, which needs to include the course number and title of the other school’s course, and indicate which corresponding course at the University of Rochester transfer credit is being sought for. Course Approval Forms are available at the College Center for Advising Services counter outside Lattimore 312. Upon completion of the course(s), students need to request that the Registrar at the other school send an official transcript to the College Center for Advising Services.

Further information regarding university transfer credit policy is available at: www.rochester.edu/college/CCAS/AdviserHandbook/TransferCrdt.html.

Petitions

Requirements for the Bachelor of Arts and the Bachelor of Science degrees in Chemistry appear in the Undergraduate Bulletin (www.rochester.edu/bulletin), and the most up-to-date listings can be found on the Chemistry Department web site (www.chem.rochester.edu). Although these requirements may appear to be set in stone with little room for compromise, a Chemistry major may petition the Undergraduate Studies Committee for a course waiver or a course substitution. One can petition for substitution of a laboratory course in another science for a chemistry laboratory course or for a waiver of a course that covers material already learned in another course. A petition should explain the proposed deviation from the requirements and the reason for it. Your petition should be sent by e-mail to the Chair of the Undergraduate Studies Committee (page 3). The petition will be circulated to the committee, and the committee will decide whether or not to grant the request. The petitioner will receive notification of the decision by return e-mail.

The chemistry curriculum is designed to give a well-balanced undergraduate education in chemistry. Petitioning is a way to further optimize your education by allowing you to select special undergraduate courses.
The Chemistry Department offers a special research based Masters degree program, available only to UR students. By taking advantage of the intensive curriculum in the B.S. Chemistry program and by integrating B.S. and M.S. research, students can make efficient use of their time by accomplishing an M.S. degree with only one additional year beyond the B.S. program. Typically, enrollment in four or five graduate courses in chemistry is distributed over the fourth and fifth years of study. A research program is started in the fourth and continued in the fifth year. Both B.S. and M.S. theses are required. Most fifth year students will devote more than 50% of their time to research. When compared to more traditional course based M.S. programs in chemistry, the Rochester program reduces the time and tuition costs, while increasing the research experience of the graduates.

The five-year program makes no assumptions about the long-term goals of students. Some will choose to continue to study for a Ph.D. while others will choose to go to work as chemists. In either case, the program prepares students who are superbly educated for their subsequent choices. By providing an extended opportunity to pursue basic research, the program also promises to help students decide whether to pursue further study and independent research. Some students will find industrial employment in the summer between the fourth and fifth years of study, thereby acquiring a better understanding of employment opportunities.

Since the program is based on integration of the fourth and fifth years of study, careful planning is required. Students should begin to discuss this program with a faculty advisor when they begin to make decisions about senior research in the spring of their junior year. Formal application and admission to the program follows in fall of the senior year. Some tuition support for the fifth year of study is available; consideration for that support is concurrent with the review for admission.

For more information on the five year Masters program, please contact Robin Cooley, Graduate Studies Coordinator at: gradrec@chem.rochester.edu
Applying to graduate school

The process of applying to chemistry graduate school is very similar to that for an undergraduate college but with a different timetable. Although many schools accept applications through February and later, it is wise to start early.

The way to begin is to decide what you want to get out of graduate school. What areas of research interest you the most? What would you like to do after graduate school? Why do you want a doctorate or a master's degree? How much money do you need for your upkeep while in graduate school? Honest answers to these types of questions can focus your search as you ascertain which graduate schools are right for you.

Next, you should look at graduate schools. There are a number of sources of information to be found on campus about graduate schools. In the Career Center Library (in Meliora) and in Rush Rhees one can find Peterson's Guide to Graduate Schools, a catalog listing graduate schools and how to write to them to obtain information such as application deadlines, etc. Graduate school catalogs, which can be found in Carlson, Rush Rhees on microfiche, or from the graduate school itself, are often helpful. Professors and graduate students, especially in your area of interest, can provide a great deal of information not found in the catalogs. Another good source of advice is seniors, who by the end of their senior year have already applied to and been accepted in a graduate program. Once you have narrowed your choices to a few good schools, a visit could be the clincher. A school often subsidizes visits after you have been accepted. Once there, talk with professors and graduate students, and look over the campus and surrounding area to see if the school meets your academic and personal expectations.

A few other things one should keep in mind when looking for a graduate school are:
1. What is the acceptance rate for new graduate students at that institution?
2. Are there at least three professors there who do research you are interested in?
3. Are there additional financial awards for outstanding students?
4. What are their program requirements?

Graduate school applications vary from institution to institution. Most, however, require you to take the Graduate Record Examinations (GRE). Some may require the General test (similar in concept to the SAT), while others ask that you take the General test and the Subject test in chemistry. Test dates vary from state to state, so plan carefully where and when you want to take the test (for example, the tests are not given in October in New York, but they are given in adjacent states on that date). Both tests may be taken on the same day. It is advisable to take them early in your senior year. Another item most schools require are recommendations. Although you can set up a credentials file of recommendations at the Center for Work and Career Development, this may be of little use since some schools frown on the use of generic recommendations. Lastly, take a look at national fellowships for graduate school. It is a big feather in your cap if you can win one of these (e.g. an NSF Graduate Fellowship). The Career Center can be of assistance if problems or questions arise in filling out graduate school applications. The best idea is to complete your applications in early fall of your senior year, for both schools and fellowships, since most schools and funding opportunities operate on a rolling admissions basis (first come, first served).

In summary:
1. begin the researching process early in your senior year (perhaps the summer before),
2. send out requests for applications in October (it may take you several weeks to receive them), and
A chemistry degree from the University of Rochester is a valuable asset with regard to postgraduate opportunities. Degrees from the University of Rochester are highly regarded in the scientific community, and the University of Rochester chemistry graduates have traditionally gone on to study at distinguished research institutions. For example, during recent years University of Rochester graduates have been accepted at graduate schools such as the University of California-Berkeley, University of California-Irvine, University of California-Santa Cruz, Massachusetts Institute of Technology, University of Chicago, Harvard University, Northwestern University, University of Michigan, Michigan State University, Colorado State University, University of Illinois, University of Pennsylvania, California Institute of Technology, Columbia University, Tufts University, the University of Rochester, etc. Many graduates have gone on to medical or dental school; others have gone directly into private industry. Whatever your choice, you will discover that your University of Rochester degree is recognized and respected.
Admissions
(585) 275-3221
admit@admissions.rochester.edu
www.enrollment.rochester.edu/admissions
- Tours and Information:
 www.enrollment.rochester.edu/admissions/visit

Bursar
(585) 275-3931
bursar@admin.rochester.edu
www.rochester.edu/adminfinance/bursar

Center for Excellence in Teaching and Learning (CETL)
(585) 275-9049
cetl@rochester.edu
www.rochester.edu/college/cetl

College Center for Advising Services (CCAS)
(585) 275-2354
cascas@mail.rochester.edu
ww.rochester.edu/college/CCAS
- Health Professions:
 www.rochester.edu/college/ccas/health

Dining Services
www.rochester.edu/studentlife/dining.html
- Meal Plans
 (585) 275-8756
 mealplans@services.rochester.edu
- General Information
 (585) 275-6265
 RCDining@services.rochester.edu

Financial Aid Office (FAO)
(585) 275-3226
www.enrollment.rochester.edu/financial

Orientation
(585) 275-4414
orientation@rochester.edu
www.rochester.edu/college/orientation

International Services Office (ISO)
(585) 275-2866
questions@iso.rochester.edu
www.iso.rochester.edu

Information Technology Services (ITS)
(585) 275-2000
UnivITHelp@rochester.edu
www.rochester.edu/IT

Registrar
(585) 275-8131
registrar@rochester.edu
www.rochester.edu/registrar

Residential Life
(585) 275-3166
housing@reslife.rochester.edu
www.rochester.edu/reslife

University Health Services (UHS)
(585) 275-2662
UHS message service
www.rochester.edu/uhs

Department of Chemistry
Main Office
Hutchison Hall, Room 404C
(585) 275-4231
www.chem.rochester.edu
- Undergraduate Studies
 Hutchison Hall, Room 404D
 (585) 276-3663
 ugradadm@chem.rochester.edu
- Graduate Studies
 Hutchison Hall, Room 471
 (585) 275-0635
 gradrec@chem.rochester.edu