Phylogenetic Analysis of a Retrotransposon with Implications for Strong Evolutionary Constraints on Reverse Transcriptase

Bryant F. McAllister and John H. Werren

Department of Biology, University of Rochester

This study examines the evolutionary dynamics of a retrotransposon in a group of parasitoid wasps. A region containing the reverse transcriptase (RT) domain was sequenced for 43 elements from the genomes of nine different wasp species. Phylogenetic analysis of the elements revealed concordance with taxonomic classification of the host species, and the pattern was consistent with that expected for vertical transmission of a multicopy element during differentiation of the species. Twenty-three of the 43 elements had comparable intact open reading frames in the amplified region, and these were used in an analysis of evolutionary constraint on the amino acid sequence. As previously documented for retroelements, closely related elements exhibited nearly equal substitution rates at non-synonymous and synonymous sites, but relative non-synonymous substitution rates decreased as increasingly divergent elements were compared. A statistical test indicated that the decrease was not due to saturation of weakly selected sites. The pattern is most likely caused by a "pseudogene effect." Individual elements are not subject to purifying selection, and therefore, synonymous and non-synonymous substitutions accumulate at equal rates. Comparisons among closely related elements are influenced strongly by this pseudogene evolution, whereas comparisons among distantly related elements reveal selection on the actively replicating lineages connecting the elements. These distant comparisons more accurately reflect the constraints on the amino acid sequence, and the comparisons among elements in this study indicated strong constraints on RT.

Introduction

Mobile genetic elements have been identified in the genomes of many organisms, including representatives of bacteria, fungi, plants, and animals. Mobile elements are classified into two major groups based on their mode of replication (Charlesworth, Sniegowski, and Stephan 1994). Retroelements (Class I) replicate via an RNA intermediate, whereas "classic" transposable elements or short inverted repeat elements (Class II) replicate via a DNA intermediate. The major biological difference between these two modes of replication is that, once inserted, retroelements remain in the genome (barring excision by recombination) and RNA transcripts are used as templates for replication. On the other hand, Class II elements replicate by excising from the genome and reinserting into another location.

The long-term evolutionary dynamics of mobile elements remain a matter of debate (Kidwell 1992; Capy, Anxolabéhère, and Langin 1994; Cummings 1994). Are mobile elements solely transferred horizontally where they escape in the progeny of that host, or are mobile elements frequently transferred horizontally where they escape in the confines of their host's genome and establish themselves in the genome of another species? Analyses of the phylogenetic patterns exhibited by mobile elements are providing evidence that distinguishes between these two possibilities. By examining the phylogenetic pattern of mobile elements present in many host species relative to the phylogenetic pattern of their hosts, the evolutionary history of the elements can be determined. However, the evolutionary complexity of multicopy elements requires a systematic survey to accurately reveal their long-term evolutionary history (Cummings 1994).

Recent sequence analyses of mobile elements have provided solid evidence to support both horizontal and vertical modes of evolution. Two Class II elements, P and mariner, appear to have undergone recent horizontal transfer. Similarity in nucleotide sequence indicates that the P element of Drosophila melanogaster was recently transferred into this species from a species in the wilistoni group of Drosophila (Clark, Maddison, and Kidwell 1994). Based on sampling of the mariner element from widely divergent insect taxa, this element apparently has undergone widespread horizontal transfer (Robertson 1993; Robertson and MacLeod 1993). On the other hand, analyses of retrotransposons provide a number of examples where the element has been maintained by vertical transmission during the radiation of their host species. The elements which have been studied are: LINE1 elements in rodents (Hardies et al. 1986; Casavant, Sherman, and Wichman 1996), R1 and R2 elements in Drosophila (Eickbush and Eickbush 1995; Lathe et al. 1995), copia-like elements in cotton (VanderWiel, Voytas, and Wendel 1993), and SURL elements in echinoids (Springer et al. 1995). One interesting correlation which is emerging from these studies is that RNA-mediated elements appear to be vertically maintained within host lineages, while DNA-mediated elements appear to undergo frequent horizontal transfer.

Although the pattern of retrotransposon evolution over a relatively narrow time period is indicative of vertical transmission, arguments have been made for horizontal transfer of retrotransposons over a long-term scale. All retroelements encode reverse transcriptase (RT), because this protein converts an RNA transcript into DNA during the replication cycle (Eickbush 1994; Flavell 1995). In comparisons among RT amino acid sequences from distantly related retroelements, the re-
relationships among the elements generally do not reflect the phylogeny of their host species (Xiong and Eickbush 1990; Flavell 1992; Springer and Britten 1993; Eickbush 1994). This incongruence may represent horizontal transfer. Alternatively, phylogenetic analyses of the currently recognized elements may be inadequate for verifying long-term vertical maintenance of the elements (Cummings 1994). When elements from distantly related taxa are compared, it is difficult to determine orthology or paralogy among elements. Furthermore, comparisons among very divergent elements are confined to amino acid sequences, and unsubstantiated assumptions have been made concerning the rate of RT evolution (Flavell 1992). A measure of the constraints on RT will reveal the relative evolutionary rate of this protein sequence, thus providing a useful evaluation of the evidence for horizontal transfer.

This study analyzes the phylogenetic pattern of the retroelement NATE (Nasonia Transposable Element) in the genomes of nine parasitoid wasps, all occurring within the chalcid family Pteromalidae. NATE is a 11-kb dispersed repeat and contains a 1-kb long terminal repeat (LTR) oriented in the same direction at both ends of the element (McAllister 1995). Based on structural features and phylogenetic analysis of an internal amino acid sequence which is similar to RT sequences of other retroelements, NATE was described as a member of the gypsy/Ty3 group of LTR retrotransposons (McAllister 1995). This group of elements is very interesting, because it apparently represents the sister group to retroviruses (Doolittle et al. 1989; Xiong and Eickbush 1990; Eickbush 1994) and may even be capable of infectious transfer (Kim et al. 1994). Although this group of elements is affiliated with infectious agents, a study of one member of this group supports its maintenance by vertical transmission (Springer et al. 1995).

NATE was originally isolated as an insertion into the supernumerary PSR (Paternal Sex Ratio) chromosome in Nasonia vitripennis (McAllister 1995). Study of its distribution and phylogenetic pattern was initiated to reveal the evolutionary history of PSR. The implications of the NATE phylogeny on the evolution of this chromosome will be treated with more detail elsewhere. In this paper, we examine the evolutionary dynamics of NATE, general patterns of retrotransposon sequence evolution, and evolutionary constraints on the RT domain. A critical finding of this analysis is that, although individual elements apparently evolve as pseudogenes, comparisons among distantly related elements reveal strong effects of purifying selection.

Materials and Methods

Primer Design

Procedures for isolating the original copies of NATE from the PSR chromosome have been described (McAllister 1995). These elements (PSR c41b, c17, c5, and c16) were isolated from a λ-clone genomic library constructed from PSR-carrying males in the MI strain of N. vitripennis (Reed et al. 1994). Sequences of the complete RT domain from these elements have been reported (GenBank accession U29470–U29473; McAllister 1995), and for this study were extended to an approximately 1,100-bp region. Cross-hybridizing elements were isolated from a N. longicornis genomic library. This N. longicornis λ-library contains genomic DNA of the IV-14 strain partially digested with Sau3AI and ligated into the EMBL3 λ-vector (Stratagene). A plasmid clone (P41-S5) containing the RT region from a PSR-inserted element (PSR c41b) was used as a probe to screen three genome equivalents of the N. longicornis λ-library. This screen yielded many clones which hybridized to the probe and eight clones were isolated for DNA purification. The N. longicornis clones were examined by restriction digestion patterns and a preliminary sequencing analysis was performed. An approximately 1,100-bp region encompassing the RT domain was subcloned into plasmids and sequenced from two of the N. longicornis λ-clones (c21 and c105. GenBank accession U69494 and U69495). These four PSR and two N. longicornis reference sequences were obtained by directly subcloning into plasmids and sequencing both DNA strands.

Comparisons among the sequences from the four PSR elements and the two N. longicornis elements revealed regions of sequence conservation, thus identifying suitable primer sites which could be used to amplify this region from elements in genomic DNA. Two different primer sets were developed (fig. 1). The g-primer combination (N6, 5' TAC ACC TCA AAG GCA CAG; N14, 5' AGA CCA GCT TCG TTT ATC C) is a general primer set having high sequence conservation among all the reference sequences, and the product obtained from this reaction is approximately 770 bp. The p-primer set (N12, 5' GCC TCC CTC TCG TCT GCA; N13, 5' CAA TGG GTT TGA CTC GTT CG) was designed to amplify elements related to the elements on PSR and exclude the N. longicornis c105 element from amplification, and the reaction product is about 840 bp. These primer combinations were tested in control PCR reactions using reference elements in λ-clones as template. As expected, the general primer set (N6/N14) amplified a product from all the reference elements (PSR c41, N. longicornis c21, and N. longicornis c105), whereas the more specific p-primer set (N12/N13) did not amplify a product from N. longicornis c105.

PCR Amplification, Cloning, and Sequencing

Twelve wasp strains were screened for the presence of NATE. The taxonomic associations of these wasp species, collection localities of the strains, and providers are presented in table 1. Wasps were maintained in the laboratory on Sarcophaga bullata or Musca domestica pupae. Mass quantities of adult wasps (about 200) from each strain were used for DNA isolation and standard procedures were followed. Wasps were homogenized and solubilized in a solution containing 0.15 M NaCl, 0.1 M EDTA, 0.5% SDS, and 150 μg/ml proteinase K. Following phenol : chloroform (1:1) extractions, the DNA was precipitated with isopropanol. The DNA was resuspended in 50 mM Tris and 10 mM EDTA and treated with RNase A (200 μg/ml). Additional phenol : chlo-
...and contained 1/10 reaction buffer (BRL), 2.5 mM MgCl₂, 100 nM each dNTP, 200 nM each primer, 2 units Taq polymerase (BRL), and an approximate 5 ng template DNA. Reaction parameters were as follows: g-primers, two times (95°C, 2 min; 50°C, 1 min; 72°C, 2 min) followed by 30 times (95°C, ...

Table 1

Species Used for Isolation of Genomic DNA

<table>
<thead>
<tr>
<th>Classification</th>
<th>Collection Locality</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Pteromalidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subfamily Pteromalinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribe Pteromalini</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasonia vitripennis (PSR/MI)</td>
<td>Utah, USA<sup>b</sup></td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nasonia vitripennis (MI)</td>
<td>Illinois, USA</td>
<td>G. Saul (Middlebury College)</td>
</tr>
<tr>
<td>Nasonia vitripennis (LI)</td>
<td>Leiden, Netherlands</td>
<td>J. van den Assem (U. Leiden)</td>
</tr>
<tr>
<td>Nasonia longicornis (IV-7)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nasonia giraulti (RV-2)</td>
<td>Virginia, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Trichomulopsis dubius</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Muscidifurax raptor</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Muscidifurax uniruptor</td>
<td>Puerto Rico</td>
<td>E. Legner (U. C. Riverside)</td>
</tr>
<tr>
<td>Urolepis rufipes</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Pachycrepoideus vindemianus</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Subfamily Spalainae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spalangia cumeroni</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Nusonia giraulti (RU-2)</td>
<td>Leiden, Netherlands</td>
<td>J. van den Assem (U. Leiden)</td>
</tr>
<tr>
<td>Nusonia longicornis (IV-7)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia vitripennis (PSR/MI)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia vitripennis (ML)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia vitripennis (LY)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia longicornis (NI)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia giraulti (RV-2)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Trichomulopsis dubius</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Muscidifurax raptor</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Muscidifurax uniruptor</td>
<td>Puerto Rico</td>
<td>E. Legner (U. C. Riverside)</td>
</tr>
<tr>
<td>Urolepis rufipes</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Pachycrepoideus vindemianus</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Subfamily Spalainae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spalangia cumeroni</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Nusonia giraulti (RU-2)</td>
<td>Leiden, Netherlands</td>
<td>J. van den Assem (U. Leiden)</td>
</tr>
<tr>
<td>Nusonia longicornis (IV-7)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia vitripennis (PSR/MI)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia vitripennis (ML)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia vitripennis (LY)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia longicornis (NI)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Nusonia giraulti (RV-2)</td>
<td>Utah, USA</td>
<td>J. Werren (U. Rochester)</td>
</tr>
<tr>
<td>Trichomulopsis dubius</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Muscidifurax raptor</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Muscidifurax uniruptor</td>
<td>Puerto Rico</td>
<td>E. Legner (U. C. Riverside)</td>
</tr>
<tr>
<td>Urolepis rufipes</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
<tr>
<td>Pachycrepoideus vindemianus</td>
<td>New York, USA</td>
<td>D. Rutz (Cornell U.)</td>
</tr>
</tbody>
</table>

^a Classification based on Kogan and Legner (1970), Burks (1979), Hoebeke and Rutz (1988), and Darling and Werren (1990).

^b Locality where PSR was collected.

...form extractions and a chloroform extraction were performed, and the DNA was precipitated with ethanol. Amplification of the RT region from elements in the genomic DNAs was performed by PCR. Reaction volumes were 50 μl and contained 1/10 reaction buffer (BRL), 2.5 mM MgCl₂, 100 nM each dNTP, 200 nM each primer, 2 units Taq polymerase (BRL), and an approximate 5 ng template DNA. Reaction parameters were as follows: g-primers, two times (95°C, 2 min; 50°C, 1 min; 72°C, 2 min) followed by 30 times (95°C, ...
to the reference elements that were sequenced on both read in one direction from a single strand and compared GTA CCT GGA CT The PCR product sequences were DNA strands. Most of the sequence was read from two gels, either by reading from the same reaction subjected to electrophoresis for two time frames (short and long different sequencing primers. The PCR products contain the Amplitron II thermocycler (Thermolyn) was used for cycling. Reaction products were assayed on 1.0% agarose gels.

In samples where a positive PCR product was obtained, about 15 µl of the PCR product was gel purified by electrophoresis in a 1.0% NuSieve GTG agarose (FMC) gel, and the band of the expected size was excised from the gel. DNA was purified from the agarose using the Gene-Clean kit (Bio 101, Inc.). The product was ligated into a modified M13mp18 vector containing T-tails (Burke, Müller, and Eickbush 1995). Single-strand DNA was isolated from at least two recombinant clones containing antisense strands of the PCR product from each wasp species.

Sequencing reactions were initiated on single-strand DNA using the -40 priming site in the vector. Reactions were performed using the Sequenase kit (USB) by labeling with [α-35S]dATP and electrophoresed through buffer-gradient gels. The following internal primers were used to extend the sequences (fig. 1): N10, 5' CAA GTG CAC AAG ATG CTC; N11, 5' TTC ACC GTA CCT GGA CT. The PCR product sequences were read in one direction from a single strand and compared to the reference elements that were sequenced on both DNA strands. Most of the sequence was read from two gels, either by reading from the same reaction subjected to electrophoresis for two time frames (short and long runs), or by reading the overlapping frame produced by different sequencing primers. The PCR products contain a mixture of sequences representing different copies of the NATE in the genome; therefore, each unique sequence potentially, but not necessarily, represented a different element. Each unique sequence was treated as an individual element, although some sequences may represent the same element that appears different due to PCR error. Additionally, PCR error (estimated at about 0.2%, Eickbush and Eickbush 1995) can increase the apparent divergence of different elements. Where the artifacts of these methods may have affected the results, the implications are discussed.

Sequences were manually entered into the computer using ESEE ver. 2.0 (Cabot and Beckenbach 1989) where the sequences were visually aligned. Once the sequences were globally compared, all nucleotide substitutions and indels were verified by re-examining the sequencing gels. Phylogenetic analyses were performed with PAUP ver. 3.1.1 (Swofford 1991) To obtain the most parsimonious tree incorporating the sequence differences among all the elements, a heuristic search was performed with sequences added randomly 50 times. Confidence in the nodes was determined by 250 bootstrap replications using the heuristic search option with five random sequence additions. Trees were rooted at the midpoint. Phylogenetic analyses were also performed using the neighbor-joining algorithm in MEGA ver. 1.01 (Kumar, Tamura, and Nei 1993).

Results

To investigate diversity of NATE in *Nasonia* and related wasps, two sets of primers were used for amplifying a region of the element from genomic DNAs. The g-primers were designed for amplification of all the reference elements obtained through library screening; p-primers were more specifically designed to amplify from elements related to those found on the PSR chromosome (McAllister 1995). Eleven wasp species from six genera were examined: *Nasonia* (*N. vitripennis, N. longicornis, N. giraulti*), *Trichomalopsis* [=Eupteromalus] (*T. americanus, T. dubius*), *Urolepis rufipes*, *Muscidifurax* (*M. raptor, M. raptorellus, M. uniraptor*), *Pachyceroideus vindeminae*, and *Spalangia cameroni*. *Nasonia, Trichomalopsis, Urolepis, and Muscidifurax* are relatively closely related wasps in the tribe Pteromalini, whereas *Spalangia* and *Pachyceroideus* are more distantly related (Burks 1979). Under normal stringency reaction conditions (see Materials and Methods), the p-primers yielded a product from all Pteromalini species except *N. vitripennis* and *M. raptor*. The g-primers yielded a product from all Pteromalini species tested. Neither primer set amplified a product from the more distantly related wasps *P. vindeminae* and *S. cameroni*.

Sequences were obtained for 43 elements (including the four PSR and two *N. longicornis* elements obtained from λ-clones) representing the PSR chromosome...
and nine wasp species (GenBank accession U29470–U29473, U69494–U69532). Element names are given as the species name (except for PSR elements) followed by the isolation method (c = genomic library cloning, g = PCR with g-primers, or p = PCR with p-primers) and an identification number. The consensus region present in these 43 elements contained a total of 700 bases (flanked by the N12 and N14 primer binding sites, fig. 1) and is presumably part of an extended open reading frame (ORF) that is transcribed, translated, and subsequently processed into different active proteins (Varmus and Brown 1989). The region represents 240 bases preceding and 460 bases into the 543-bp RT domain, using the definition of the RT domain of Xiong and Eickbush (1990) as previously applied to the NATE sequence by McAllister (1995). The protease domain is expected to precede the RT domain, based on the structure of related LTR retrotransposons in the gypsy/ty3 group (Smyth et al. 1989; Evgen’ev, Corces, and Lankenau 1992). Although 80 amino acid residues preceding the RT domain were examined, no similarity to the protease domain was detected in the inferred amino acid sequence. So, it appears the amplified region preceding RT is an intervening sequence between these two protein domains. An intact ORF was evident in 27 elements throughout the entire 700 bases, but 4 of these had compensatory frame-shift mutations. Insertions, deletions, or nucleotide substitutions causing stop codons in the ORF were observed in 16 of the elements.

These sequences isolated from nine taxa provided data for examining several aspects of retrotransposon evolution. First, relationships among the elements were compared to the taxonomy of the host species to infer the evolutionary history of the element. The phylogeny of the elements was examined for evidence of horizontal transfer or a pattern of vertical transmission during the differentiation of these wasp species. If the elements have been maintained by vertical transmission, the phylogenetic relationships among elements are expected to reflect the taxonomic status of the species. Second, the process of molecular evolution of NATE was examined. Incorporation of nucleotide substitutions at silent and replacement sites helped reveal the pattern of element evolution and provided evidence for strong constraints on RT.

Phylogenetic Analysis

Evolutionary relationships among these 43 elements were examined by phylogenetic analysis of the approximately 700-bp region sequenced for all the elements. A parsimony analysis of the data set revealed 16 trees with 791 evolutionary steps depicting the most parsimonious relationships among the elements. Differences among the 16 equally-likely trees were minor, and limited to placement of terminal taxa within the tree. Bootstrap analysis was used to determine the confidence in the nodes of the tree (Felsenstein 1985). The bootstrap consensus tree, containing nodes supported in more than 50% of the 250 bootstrap replicates, is presented in figure 2. The tree is rooted at the midpoint. Two major subfamilies of elements were revealed and designated subfamily I and subfamily II (fig. 2). Elements in subfamily I were represented in all the wasp species that yielded a PCR product, except for N. vitripennis and M. raptor. Subfamily II contained elements from the three Nasonia species and a single element from M. raptor. Analysis of the same data set using the neighbor-joining algorithm (Saitou and Nei 1987) produced a similar phylogenetic pattern.

Phylogenetic relationships among the Nasonia elements can be directly compared to an established phylogeny based on independent molecular markers. Analyses of sequence data from the ITS2 and 28s D2 regions of rDNA (Campbell, Steffen-Campbell, and Werren 1993) and a region of the 16s gene in mtDNA (unpublished) have established that N. vitripennis is more distantly related to the sister species N. longicornis and N. giraulti. Both analyses placed T. dubius as an outgroup to the Nasonia species; however, none of the other wasp species examined in this study were included. The phylogeny of Nasonia elements in subfamily II reflects the phylogeny of those species (fig. 2). Elements from N. longicornis and N. giraulti are closely related to each other, whereas elements from N. vitripennis are more distantly related. Only elements from N. longicornis and N. giraulti are presented in subfamily I, and these formed a clade separate from the other genera. Partial sequences of two elements from N. vitripennis were obtained, but are not presented in this analysis. In an analysis using sequences from a smaller region, these two N. vitripennis elements formed a clade with the other Nasonia elements in subfamily I. Again, these were more distantly related to the N. longicornis/N. giraulti elements. Contrary to the phylogenetic relationships among these species is that elements from the supernumerary PSR chromosome of N. vitripennis are contained within the group of elements from Trichomalopsis (fig. 2). This pattern relates to the evolutionary history of PSR.

Because systematic relationships among all of these wasp species have not been established, the remaining elements must be examined relative to the taxonomic status of their host species. The pattern exhibited by the elements is complex, but generally consistent with the taxonomy. Except in cases of divergent lineages being present in a single species, elements generally grouped within species and genera boundaries (fig. 2). Some of the species-specific clades contain very closely related elements which may be artifacts of PCR. A total of eight sequence pairs were less than 1.0% different; however, except for two pairs, other more divergent elements were present in the species-specific clades, indicating validity of the clades. Elements from each genus grouped into a strongly supported clade that was quite separate from the other genera. Relationships among these genera were not supported with high confidence, because at this level of comparison synonymous nucleotide positions were approaching saturation, thus creating noise in the data. By analyzing only nonsynonymous sites, it may have been possible to obtain a more reliable branching pattern among these genera. However, in the absence of a complete species phylogeny, there is no null hypothesis for comparing the relationships among
Fig. 2. Phylogenetic relationships among the elements isolated from nine species of parasitoid wasps. The tree represents the bootstrap consensus following 250 replicates, and nodes with confidence values greater than 50% are indicated.

elements from the different genera. Nevertheless, the general pattern representing the taxonomy of the species is evident. Additionally, wasp species that yielded a PCR product are all classified in the tribe Pteromalini, whereas the two species classified outside of this tribe did not produce a product.

The overall pattern exhibited by these elements was somewhat obscured by the presence of multiple lineages within individual genomes (fig. 2). These divergent lineages apparently represent instances of long-term maintenance of multiple element lineages within an individual genome. Although some of these paralogous lineages appear old, none are unique to a single group of wasps. For example, the two divergent lineages in the *Nasonia* species apparently diverged prior to the divergence of this entire group of wasps, but neither was unique to *Nasonia*. Additionally, none of the paralogous lineages show evidence of horizontal transfer among these species, because all are more divergent than the basal splitting of the genera.

Two cases were observed where closely related elements from a single species did not clearly resolve into a distinct phylad. The *N. longicornis* elements in subfamily II do not clearly resolve into a separate phylad from the *N. giraulti* elements (fig. 2), although the two *N. giraulti* elements did significantly resolve into a distinct clade. The same pattern is apparent with the *T. dubius* elements and the *T. americanus/PSR* phylad in subfamily I (fig. 2). In both cases, the elements from the species that did not resolve had comparatively long branch lengths representing a large number of autapomorphic nucleotide substitutions. It appears as though these elements duplicated from a common element prior to the divergence of the species, and have remained in
FIG. 3.—Phylogenetic relationships among the 23 elements used to analyze the substitution patterns. These elements all had intact reading frames in the region sequenced. The tree represents the 50% majority-rule bootstrap consensus tree incorporating 312 nucleotide substitutions.

the genome of the one species (N. longicornis and T. dubius) following the speciation event. In both cases, this element diversity was not detected in the genome of the closely related species (N. giraulti and T. americanus). More extensive sampling of these species may have revealed multiple clades representing the divergence between the two species.

Reverse Transcriptase Evolution

A total of 43 elements were represented by the sequences obtained from the λ-clones and PCR products. The sequenced region encompasses 80 amino acids (aa) preceding and 153 aa of the RT domain (fig. 1). Of the 43 elements, 23 had comparable protein reading frames, 4 had compensatory frame-shifts in the reading frame, and 16 had stop codons caused by base substitutions or frame-shifts. A conservative approach was taken to determine evolutionary constraints on the coding sequence by only analyzing the 23 sequences without frame-shifts or stop codons in the reading frame. A phylogenetic analysis was performed on these sequences, and the 50% majority-rule bootstrap consensus tree is presented in figure 3. To investigate the constraints on the amino acid sequence in the sequenced region, the ratio of synonymous (Ks) to nonsynonymous (Kn) substitutions was examined. This measure of the relative substitution rate at these sites is an indicator of purifying selection on a coding sequence. In the absence of purifying selection, the Ks/Kn ratio is expected to equal unity, and as the intensity of purifying selection increases, the ratio also increases. A total of 253 pairwise comparisons were performed, and the mean Ks, Kn, Ks/Kn, and total distance was obtained for all the intraspecific and interspecific comparisons. All intraspecific comparisons were within the same basal clade (fig. 3). As expected for a coding sequence, rates of substitution at synonymous sites were generally higher than at nonsynonymous sites. However, the Ks/Kn ratio increased as the evolutionary distance between the sequences being compared increased. This curious pattern has been observed in other studies of retrotransposons (Springer, Davidson, and Britten 1991; Lathe et al. 1995; Springer et al. 1995). Analyses were performed to quantify the pattern, test for its statistical significance, and test a proposed cause.

Using the mean distance measures among groups of elements, the ratio of Ks/Kn was examined relative to the total divergence between the sequences being compared. The ratio of synonymous/nonsynonymous substitutions per site versus the overall sequence divergence was plotted (fig. 4). A clear pattern emerges upon plotting these data; the ratio of Ks/Kn is dependent on the level of divergence between the sequences being compared. Sequences which are very closely related have

FIG. 4.—Relationship between the Ks/Kn ratio and total distance. Boxes represent means for comparisons among element clades within each species, and circles are means for each between-species comparison. Regression lines were fit independently for within- and between-species comparisons.
nearly equal rates of substitution, whereas very distantly related sequences have low rates of nonsynonymous relative to synonymous substitution. Regression lines were fit independently to the within-species and between-species comparisons (fig. 4). No significant correlation was observed for the within-genome comparisons ($r^2 = 0.003$), whereas a positive correlation was observed for the between-genome comparisons, and an exponential regression ($r = 0.5343$). Although the pattern was evident and supported by the regression lines, assumptions about independence among the data are violated for regression analysis.

A different approach was applied to determine the statistical significance of the pattern observed in figure 4. This test was based on similar assumptions concerning the constancy in the rates of silent and replacement substitutions through time as the statistical test proposed by McDonald and Kreitman (1991) for the analysis of single-copy protein-coding genes. Three minimal-length trees of 312 steps were obtained following parsimony analysis of the 23 sequences. All differences among the trees were in the placement of *T. dubius* p13 and p16. The majority-rule bootstrap tree (fig. 3) was used to map the 312 nucleotide substitutions on the gene tree connecting the 23 sequences. Each silent or replacement substitution (convergent changes treated independently) was categorized into four classes (table 2A); (1) occurring in a single element (unique), (2) polymorphic within the elements of a clade from a single species, (3) fixed in all elements of a clade from a single species, or (4) present in elements from more than one species. These different categories were intended to represent persistence of nucleotide substitutions through increasing lengths of evolutionary time. As expected, with increased evolutionary time between elements, the number of accumulated silent substitutions increased (table 2A). However, replacement substitutions exhibited the opposite pattern. A total of 61 replacement substitutions were present in single elements and only 11 replacement substitutions were shared among elements isolated from more than one species. Patterns of silent and replacement substitution over this representation of evolutionary time were significantly ($P < 0.001, \chi^2 = 77, df = 3$) different. Some nucleotide substitutions observed in single elements (class 1) could have resulted from polymerase error during PCR. These would have occurred at silent and replacement sites proportional to the number of sites (approximately 1:3 for this sequence), thus biasing the ratio of silent to replacement substitutions in this class toward neutrality. A test of independence excluding the single-element class still revealed a statistically significant result ($P < 0.001, \chi^2 = 30.22, df = 2$).

One possible explanation for this phenomenon is that saturation has been reached at weakly selected amino acid sites when distantly related elements are compared (Springer, Davidson, and Britten 1991; Lathe et al. 1995; Springer et al. 1995). If so, the same nucleotide substitutions resulting in replacements should be occurring at weakly selected aa sites in different clades (convergent evolution to the same amino acid sequence). Weakly selected sites become saturated as more distantly related elements are compared, thus decreasing the observed rate of nonsynonymous substitution. To test this hypothesis, each of the 104 replacement substitutions was examined and identified as unique, or as occurring as independent events in different clades in the inferred phylogeny (table 2B). If the pattern represents saturation, nonsynonymous sites with two or more independent substitutions resulting in the same replacement should be more numerous than the random expectation. The expected distribution of the 104 replacement substitutions over the 526 nonsynonymous sites was calculated using the Poisson distribution ($\lambda = 0.1977$). Fit between the observed and expected distributions was not significantly different ($\chi^2 = 3.668, P = 0.30, df = 2$). This result indicates that an excess of convergent nucleotide changes resulting in the same amino acid replacements were not present in these sequences.

Putative “dead” elements can also be informative of retroelement evolution. Of the 43 sequences, 16 had stop codons and 4 had compensatory frame-shifts in the reading frame. In 8 of the 20 elements with problems in the reading frame, the mutation causing the problem was unique to that element. The other 12 elements had mutations which were shared, so there were 6 element pairs that had the same mutations causing problems in the reading frame. Identifying different elements that share potentially deleterious mutations is important for revealing which elements in the genome are capable of replication. Three cases of shared mutations may be artifacts from the methods of obtaining sequences. In two cases, the sequence differences between the elements was low (<0.6%) suggesting that the sequences sharing defects may have amplified from the same dead element. One case represents the inability to resolve an inferred deletion in a sequencing compression. The other three cases were not attributed to error, and thus apparently
represent the replication of elements with mutations in their amino acid sequences. The elements *T. dubius* g23 and g28 had the same indels causing a compensatory frame-shift over 5 aa, and were 4.0% different at the sequence level. Two elements (g4 and g6) from *U. rufipes* also shared indels causing a compensatory frame-shift over 35 aa; the two elements were 3.3% different in sequence. A nucleotide substitution resulting in a stop codon was shared by *N. vitripennis* g22 and g36, which were 4.3% different at the sequence level. These three sequence pairs suggest the existence of “parasitic” elements that can replicate with proteins encoded by functional elements.

Discussion

When examining the phylogeny of a transposable element in a group of host organisms, the null hypothesis is that the element has been transmitted vertically through the germ line (Cummings 1994). Except for the elements residing on the supernumerary PSR chromosome, no patterns were observed in the phylogeny of *NATE* in this group of parasitoid wasps that are inconsistent with vertical maintenance of the element during the divergence of these species. Elements were isolated from nine species representing four different genera. The genome of each species generally yielded at least one monophyletic group of elements, and elements from multiple species within the same genus all formed monophyletic groups representative of the genus. Because the grouping of elements by taxonomic status of these wasp species was evident, the evolutionary history of *NATE* apparently represents an additional case of vertical maintenance of a retroelement. Several aspects of the *NATE* phylogeny were not representative of a single-copy nuclear gene, but are typical of interspecific comparisons among multicopy elements. More specific analyses of these patterns await a more complete molecular phylogeny of these genera.

The one pattern in the *NATE* phylogeny inconsistent with vertical transmission was the position of elements isolated from the supernumerary PSR chromosome of *N. vitripennis*. Elements on PSR were closely related to elements amplified from the genome of *Trichomalopsis americanus*, and the PSR elements were contained in a clade of elements represented by both *T. americanus* and *T. dubius*. Because the PSR elements were contained within this *Trichomalopsis* clade, loss of these elements within the autosomal complement of the three *Nasonia* species with retention on PSR is not sufficient to explain the relationship between the PSR elements and the *Trichomalopsis* elements. The PSR chromosome has only been detected in *N. vitripennis* populations in the great basin region of North America, although the species occurs worldwide (Werren 1991; Beukeboom 1992). This limited distribution is suggestive of a recent origin for PSR in *N. vitripennis*. The relationship between elements on PSR and in the genome of *Trichomalopsis* apparently represents transfer (presumably by intergeneric hybridization) of the intact PSR chromosome or a chromosomal fragment which evolved into PSR. These copies of *NATE* are not the only regions of PSR which exhibit similarity with the genome of *Trichomalopsis* (unpublished).

Analysis of the phylogenetic relationships among the elements were complicated by the presence of multiple lineages within single species. In analyses of element phylogeny to infer the pattern of historical maintenance, presence of multiple lineages must be considered (Cummings 1994). If elements are sparsely sampled from individual genomes, an element phylogeny may be obtained that is inconsistent with host phylogeny. Thorough sampling of elements increases the likelihood of identifying all members of orthologous lineages, and these orthologous elements should accurately reflect the host phylogeny when maintained vertically. Presence of multiple divergent element lineages within a single genome is common for retroelements (Burke et al. 1993; VanderWeil, Voytas, and Wendel 1993; Lathe et al. 1995; Springer et al. 1995; Casavant, Sherman, and Wichman 1996). The common explanation for multiple lineages is ancient divergence among independent lineages. Alternatively, multiple lineages in a single genome may represent the acquisition of a divergent lineage through horizontal transfer. The paralogous lineages in the *NATE* phylogeny are consistent with vertical maintenance of a multicopy element. All of the major paralogous lineages are contained within the entire element phylogeny and represented by more than one group of wasps. Furthermore, there is no evidence of horizontal transfer among these species because all the paralogous lineages diverged prior to the basal splitting of the genera.

Extinction of an element lineage occurs when all elements in a lineage lose the ability to replicate (stochastic loss). Although it could not be substantiated with independent data, a possible example of stochastic loss has occurred in the ancestor of the three *Nasonia* species. Based on sequences of the ITS and 28s D2 regions of rDNA (Campbell, Steffen-Campbell, and Werren 1993) and mtDNA (unpublished), *T. dubius* is closely related to the *Nasonia* species. Also, preliminary sequencing data indicate that the *Muscidifurax* species represent a divergent group separated from a clade containing *Trichomalopsis* sp., *Nasonia* sp., and *Urolepis* sp. (unpublished). Given these relationships among the genera, it would appear that an entire lineage of elements has been lost in the common ancestor of the *Nasonia* species. Elements should have been detected in *Nasonia* that were contained in the clade represented by PSR, *T. americanus*, *T. dubius*, and *U. rufipes* (fig. 2). The absence of elements was not due to experimental limitations, because an extensive search in the *Nasonia* genome using PCR and restriction digests of the product failed to identify this lineage of elements and the presence of these elements was not revealed by Southern hybridization (unpublished). Because retroelements exhibit the propensity for maintaining multiple element lineages within a single genome, and with the added factor of lineage extinction, this may preclude the detection of all members of an orthologous group. As more disjoined host taxa are examined, and as the similarity
among elements decreases, the probability of obtaining an element phylogeny which is incongruent with host phylogeny increases. This may explain the incongruent phylogenies that are observed in comparisons among extremely divergent retroelements (Xiong and Eickbush 1990; Flavell 1992; Springer and Britten 1993, Eickbush 1994).

The evolutionary history of NATE in this group of parasitoids was very similar to the pattern exhibited by the SURL element in echinoids (Springer et al. 1995). Both of these elements are members of the gypsy/Ty3 group of LTR retrotransposons (Springer and Britten 1993; McAllister 1995), a group which is closely allied with retroviruses (Xiong and Eickbush 1990). The PCR primers used to amplify NATE from these wasp species were also used in attempts to amplify homologous elements from potential "sources" or "sinks" for horizontal transfer. No elements were amplified from genomic DNA of flies (Protocalliphora sp., Calliphora sp., or Sarcophaga bullata) used as hosts by Nasonia (unpublished). It has been shown that a cytoplasmic microorganism (Wolbachia) has probably been horizontally transferred between Nasonia and Protocalliphora (Wren, Zhang, and Guo 1995), so if NATE is prone to horizontal transmission, this is an ecological association where it could occur. With the relationship between LTR retrotransposons of nonvertebrates and retroviruses of vertebrates, it is interesting that the two elements studied thus far exhibit patterns of vertical transmission.

Sequences of RT are commonly used in the comparisons among distantly related elements, and a measure of the constraints on this protein may help evaluate these comparisons. The region of NATE that was analyzed in this study provides a measure of the evolutionary constraints on RT. Evolutionary constraint on the RT amino acid sequence was inferred by examining the relationship between silent (synonymous) and replacement (nonsynonymous) substitutions in pairwise comparisons between elements. In the absence of purifying selection, the substitution rate at synonymous \((K_s)\) and nonsynonymous \((K_a)\) sites should be equal, but as the intensity of purifying selection increases, a corresponding decrease in \(K_a\) should also be observed. Examining the ratio \(K_a/K_s\) provides a measure of purifying selection. In comparisons among NATE, an interesting pattern was observed. Closely related elements exhibited low values for \(K_a/K_s\), but as more distantly related elements were compared the value of the ratio increased greatly (fig. 4). This pattern has also been noted in other studies of retroelements (Springer, Davidson, and Britten 1991; Lathe et al. 1995; Springer et al. 1995). In a statistical test of the NATE data, the patterns of silent and replacement substitutions were significantly different among different levels of divergence. A large number of replacement substitutions were observed in terminal branches (autapomorphic changes) within the phylogenetic framework, and replacement substitutions decreased in more ancient branches of the phylogenetic tree.

Two hypotheses have been proposed to account for the decrease in replacement substitutions as increasingly divergent elements are compared (Springer, Davidson, and Britten 1991; Springer et al. 1995), but neither hypothesis has been directly tested. The first hypothesis is that weakly selected amino acid sites rapidly saturate; thus, nonsynonymous divergence reaches a maximum as synonymous divergence increases. A prediction of this model is that an excess of nonsynonymous sites should exhibit independent (convergent) nucleotide substitutions resulting in the same amino acid replacements. Statistical analysis of the NATE data did not support this prediction. Only 8 of the 526 nonsynonymous sites exhibited convergent substitutions leading to identical replacements, which was lower than the random expectation given the observed number of nonsynonymous substitutions.

An alternative hypothesis for explaining this pattern is the "pseudogene effect." Standard coding genes are subject to purifying selection which eliminates replacement substitutions resulting in reduced protein function. In contrast, following the insertion of a retrotransposon into the genome, nucleotide substitutions accumulate in the element without being subjected to purifying selection. In effect, each element acts as a "pseudogene" free to accumulate both synonymous and nonsynonymous substitutions, thus, each terminal element lineage should evolve with equal per-site rates of synonymous and nonsynonymous substitution (Hardies et al. 1986; Springer, Davidson, and Britten 1991; Springer et al. 1995). The pseudogene effect arises from comparisons among elements to measure \(K_a\) and \(K_s\), because the value of these distance measures are affected by two components. The pseudogene component is the equal per-site accumulation of synonymous or nonsynonymous substitutions, thus, each terminal element lineage should evolve with equal per-site rates of synonymous and nonsynonymous substitution (Hardies et al. 1986; Springer, Davidson, and Britten 1991; Springer et al. 1995). The pseudogene effect arises from comparisons among elements to measure \(K_a\) and \(K_s\), because the value of these distance measures are affected by two components. The pseudogene component is the equal per-site accumulation of synonymous or nonsynonymous substitutions, thus, each terminal element lineage should evolve with equal per-site rates of synonymous and nonsynonymous substitution (Hardies et al. 1986; Springer, Davidson, and Britten 1991; Springer et al. 1995). The pseudogene effect arises from comparisons among elements to measure \(K_a\) and \(K_s\), because the value of these distance measures are affected by two components. The pseudogene component is the equal per-site accumulation of synonymous or nonsynonymous substitutions, thus, each terminal element lineage should evolve with equal per-site rates of synonymous and nonsynonymous substitution.
is the polymerase used by retroelements for replication. Other studies (Hardies et al. 1986; Springer, Davidson, and Britten 1991, Lathe et al. 1995, Springer et al. 1995) have not reported such high restrictions on replacement substitutions in the RT sequence; however, this is the first study comparing a large number of elements with variable degrees of relatedness over the majority of the RT domain.

Evidence for strong evolutionary constraints on RT has bearing on reports that elements isolated from distantly related taxa exhibit high similarity in their amino acid sequences, thus supporting horizontal transmission. Flavell (1992) reported that copia-like retroelements in the barley and potato genomes exhibited an amino acid identity of 57% in a segment of the RT domain, whereas monocots and dicots diverged approximately 200 MYA. This level of conservation was used as support for horizontal transfer because the retroelements are unnecessary for host survival and are subjected to higher (nucleotide) mutation rates due to their error-prone replication (Flavell 1992). The argument falls on both grounds. Elements must replicate for survival through 200 Myr of host evolution; thus, there has been selection for the ability to replicate. A high nucleotide substitution rate only influences the pseudogene component of retroelement evolution and it does not necessarily invoke high rates of nonsynonymous substitution in the lineage component. All nucleotide substitutions are subjected to purifying selection during the long-term maintenance of an actively replicating element lineage.

An additional factor that may compound the pseudogene effect is the apparent ability of retroelements with deleterious substitutions in their own reading frame to "parasitize" the proteins encoded by other elements in the genome. In studying the mechanism of retrotransposon replication, helper elements have been used to encode proteins required for replication of RNA from donor elements containing the required cis-acting sequences (Kirchner, Sandmeyer, and Forrest 1992). This indicates that replication ability is not dependent on encoding proteins, but requires certain cis-acting sequences. Parasitization of replication machinery within the genome may explain the observed distribution of excess replacement substitutions observed among NATE. When the K_2/K_s ratio was plotted relative to evolutionary distance, an exponential increase was observed. The spread of low K_2/K_s values over such a large time frame may indicate that elements with deleterious substitutions replicate using functional proteins encoded by other elements. Additionally, three element pairs exhibited shared deleterious changes in the reading frame, indicating replicative persistence.

This study of NATE provides an additional example of vertical maintenance of a retrotransposon in a group of closely related species. By examining the pattern of nucleotide substitution in this element, strong constraints on replacement substitutions in RT were evident. If these constraints on RT are universal among retroelements, evidence for horizontal transfer of these elements must be reevaluated. The ubiquitous distribution of these elements may be due to their presence prior to the divergence of eukaryotes. Alternatively, retroelements may undergo infrequent horizontal transmission, but no examples of recent transfer have been identified. Furthermore, this study emphasizes the need to understand how these elements are so successful at persistence in genomes over long periods of time.

Acknowledgments

The authors would like to thank T. Eickbush, U. Bergthorsson, R. Weston, and two anonymous reviewers for helpful discussions and for comments on the manuscript. Provision of wasp strains by S. Long and J. Petersen is appreciated. This project was supported by a grant from the National Science Foundation to J. Werren. This research is part of the Ph.D. dissertation submitted by B. McAllister, who was partially supported by an Ernst Caspari Fellowship.

LITERATURE CITED

Daniel L. Hartl, reviewing editor

Accepted September 24, 1996