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In an uncertain environment, organisms often need to react quickly 
to subtle changes in their surroundings. Integrating inputs from mul-
tiple sensory systems (for example, vision, audition and somatosensa-
tion) can increase perceptual sensitivity, enabling better detection or 
discrimination of events in the environment1–3. A basic question in 
multisensory integration is: how do single neurons combine their uni-
sensory inputs? Although neurophysiological studies have revealed 
a set of empirical principles by which two sensory inputs interact 
to modify neural responses4, the computations performed by neural 
circuits that integrate multisensory inputs are not well understood.

A prominent feature of multisensory integration is the principle of 
inverse effectiveness, which states that multisensory enhancement is large 
for weak multimodal stimuli and decreases with stimulus intensity4–7.  
A second prominent feature is the spatial/temporal principle of multisen-
sory enhancement, which states that stimuli should be spatially congruent 
and temporally synchronous for robust multisensory enhancement to 
occur, with large spatial or temporal offsets leading instead to response 
suppression8–10. Although these empirical principles are well established, 
the nature of the mechanisms required to explain them remains unclear.

We recently measured the mathematical rules by which multisen-
sory neurons combine their inputs11. These studies were performed 
in the dorsal medial superior temporal area (MSTd), where visual 
and vestibular cues to self-motion are integrated12–14. We found that 
bimodal responses to combinations of visual and vestibular inputs were 
well described by a weighted linear sum of the unimodal responses, 
consistent with recent theory15. Notably, however, the linear weights 
appeared to change with reliability of the visual cue11, suggesting that 
the neural ‘combination rule’ changes with cue reliability. It is unclear 
whether this result implies dynamic changes in synaptic weights with 
cue reliability or whether it can be explained by network properties.

We propose a divisive normalization model of multisensory integra-
tion that accounts for the apparent change in neural weights with cue 
reliability, as well as several other important empirical principles of 
multisensory integration. Divisive normalization16 has been success-
ful in describing how neurons in primary visual cortex (V1) respond 

to combinations of stimuli having multiple contrasts and orienta-
tions17,18. Divisive normalization has also been implicated in motion 
integration in area MT19, as well as in attentional modulation of neural  
responses20. Our model extends the normalization framework to 
multiple sensory modalities, demonstrates that a simple set of neural 
operations can account for the main empirical features of multisen-
sory integration and makes predictions for experiments that could 
identify neural signatures of normalization in multisensory areas.

RESULTS
Brief description of the model
The model consists of two layers of primary neurons, each sensitive 
to inputs from a different sensory modality (for example, visual or 
auditory), and one layer of multisensory neurons that integrate the 
primary sensory inputs (Fig. 1a). In our basic version of the model, 
we assume that a pair of primary neurons with spatially overlapping 
receptive fields provides input to the same multisensory neuron. 
Therefore, each multisensory neuron has spatially congruent recep-
tive fields, similar to neurons in the superior colliculus9.

The unisensory inputs to each multisensory neuron increase 
monotonically, but sublinearly, with stimulus intensity (Fig. 1b). This 
input nonlinearity models response saturation in the sensory inputs21, 
which could be mediated by means of synaptic depression22 or nor-
malization within the unisensory pathways. This assumption has little 
effect on the multisensory properties of model neurons, but it plays an 
important role in the response to multiple unisensory inputs.

Following the input nonlinearity, each multisensory neuron  
performs a weighted linear sum (E) of its unisensory inputs with 
weights, d1 and d2, that we term modality dominance weights 

E d I x y d I x y= ⋅ + ⋅1 1 0 0 2 2 0 0( , ) ( , )

Here, I1(x0, y0) and I2(x0, y0) represent, in simplified form, the two 
unisensory inputs to the multisensory neuron, indexed by the spatial 
location of the receptive fields (see Online Methods for a detailed 
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Responses of neurons that integrate multiple sensory inputs are traditionally characterized in terms of a set of empirical principles. 
However, a simple computational framework that accounts for these empirical features of multisensory integration has not been 
established. We propose that divisive normalization, acting at the stage of multisensory integration, can account for many of the 
empirical principles of multisensory integration shown by single neurons, such as the principle of inverse effectiveness and the spatial 
principle. This model, which uses a simple functional operation (normalization) for which there is considerable experimental support, 
also accounts for the recent observation that the mathematical rule by which multisensory neurons combine their inputs changes with 
cue reliability. The normalization model, which makes a strong testable prediction regarding cross-modal suppression, may therefore 
provide a simple unifying computational account of the important features of multisensory integration by neurons.
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formulation). The modality dominance weights are fixed for each 
multisensory neuron in the model (they do not vary with stimulus 
parameters), but different neurons have different combinations of 
d1 and d2 to simulate various degrees of dominance of one sensory 
modality. Following an expansive power-law output nonlinear-
ity, which simulates the transformation from membrane potential 
to firing rate17,23, the activity of each neuron is divided by the net 
activity of all multisensory neurons to produce the final response  
(divisive normalization16)
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The parameters that govern the response of each multisensory neuron 
are the modality dominance weights (d1 and d2), the exponent (n) of the 
output nonlinearity, the semi-saturation constant (a) and the locations 
of the receptive fields (x0, y0). The semi-saturation constant, a, deter-
mines the neuron’s overall sensitivity to stimulus intensity, with larger 
a shifting the intensity-response curve rightward on a logarithmic axis. 
We found that this simple model accounts for key empirical principles 
of multisensory integration that have been described previously.

Inverse effectiveness
The principle of inverse effectiveness states that combinations of 
weak inputs produce greater multisensory enhancement than com-
binations of strong inputs4–7. In addition, the combined response to 
weak stimuli is often greater than the sum of the unisensory responses 
(super-additivity), whereas the combined response to strong stimuli 
tends toward additive or sub-additive interactions. Note, however, 
that inverse effectiveness can hold independent of whether weak 
inputs produce super-additivity or not7,24. The normalization model 
accounts naturally for these observations, including the dissociation 
between inverse effectiveness and super-additivity.

We examined responses of a representative model neuron (d1 = d2) 
as a function of the intensities of the two unisensory inputs (Fig. 2a). 
For inputs of equal strength (Fig. 2b), bimodal responses exceed the 
corresponding unimodal responses at all intensities, consistent with 
physiological results obtained with balanced unisensory stimuli that 
are centered on the receptive fields24. For low stimulus intensities, 
the bimodal response exceeds the sum of the unimodal responses, 
indicating super-additivity (Fig. 2b). However, as stimulus intensity 
increases, the bimodal response becomes sub-additive, demonstrating 
inverse effectiveness.

To quantify this effect, we computed an additivity index, which 
is the ratio of the bimodal response to the sum of the two unimodal 
responses. The normalization model predicts that super-additivity 
(additivity index > 1) only occurs when both sensory inputs have low 

(2)(2)

intensities (Fig. 2c), which may explain why super-additivity was not 
seen in previous studies in which one input was fixed at a high inten-
sity11. Furthermore, the degree of super-additivity is determined by 
the exponent parameter (n) of the output nonlinearity (Fig. 2d). For 
an exponent of 2.0, which we used as a default25, the model predicts 
an additivity index ≈ 2 for low intensities (Fig. 2d). Larger exponents 
produce even greater super-additivity, whereas the model predicts 
purely additive responses to low intensities when the exponent is 1.0 
(Fig. 2d). Thus, the degree of super-additivity is determined by the 
curvature of the power-law nonlinearity and greater super-additivity 
can be achieved by adding a response threshold to the model (data 
not shown).

For large stimulus intensities, responses become sub-additive (addi-
tivity index < 1) regardless of the exponent (Fig. 2d) and this effect 
is driven by divisive normalization. Thus, all model neurons exhibit 
inverse effectiveness, but super-additivity is seen only when responses 
are weak, such that the expansive output nonlinearity has a substantial 
effect. These predictions are qualitatively consistent with physiological 
data from the superior colliculus, where neurons show inverse effective-
ness regardless of whether or not they show super-additivity, and only 
neurons with weak multisensory responses exhibit super-additivity24.

To evaluate performance of the model quantitatively, we compared 
model predictions to population data from the superior colliculus26. 
Response additivity was quantified by computing a z score7 that quan-
tifies the difference between the bimodal response and the sum of 
the two unimodal responses (a z score of zero corresponds to perfect 
additivity, analogous to additivity index = 1). For combined visual-
 auditory stimuli, significant super-additivity (z score > 1.96) was 
observed for weak stimuli and additivity was seen for stronger stimuli 
(Fig. 2e), thus demonstrating inverse effectiveness. After adding 
Poisson noise and adjusting parameters to roughly match the range 
of firing rates, the normalization model produces very similar results 
(Fig. 2f). Thus, the model accounts quantitatively for the transition 
from super-additivity at low intensities to additivity (or sub-additivity) 
at high intensities, with a single set of parameters. Although these 
simulations assumed specific model parameters, inverse effectiveness 
is a robust property of the model even when stimuli are not centered 
on the receptive fields, or modality dominance weights are unequal 
(Supplementary Figs. 1 and 2).

Spatial principle of multisensory integration
The spatial principle of multisensory enhancement states that a less 
effective stimulus from one sensory modality (for example, a stimulus 
placed off the receptive field center) can suppress the response to 
a highly effective stimulus from the other modality9,10. Divisive  
normalization accounts naturally for this effect (Fig. 3).

Sensory layer
for modality 1

Sensory layer
for modality 2

Multisensory
layer

Normalization

Input 2

Input 1

a b Multisensory unit

Divisive
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Output

Normalization
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Input
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Σ

Figure 1 Schematic illustration of the normalization model of 
multisensory integration. (a) Overview of network architecture. The model 
consists of two layers of primary neurons that respond exclusively to 
sensory modalities 1 and 2. These primary sensory units feed into a layer 
of multisensory neurons that integrate responses from unisensory inputs 
with matched receptive fields. (b) Signal processing at the multisensory 
stage. Each unisensory input first passes through a nonlinearity that 
could represent synaptic depression or normalization in the unisensory 
pathways. The multisensory neuron then performs a weighted linear sum 
of its inputs with modality dominance weights, d1 and d2. Following an 
expansive power-law nonlinearity that could represent the transformation 
from membrane potential to firing rate, the response is normalized by the 
net activity of all other multisensory neurons.
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In this simulation, one of the unimodal inputs (input 1) is pre-
sented in the center of the receptive field, while the other input 
(input 2) is spatially offset from the receptive field center by differ-
ent amounts (Fig. 3a). When both inputs are centered on the recep-
tive field (Fig. 3b), the combined response exceeds the unimodal 
responses for all stimulus intensities (as in Fig. 2b). As input 2 is 
offset from the receptive field center, the bimodal response decreases 
relative to that of the more effective input 1. Notably, when the stimu-
lus offset substantially exceeds 1 s.d. of the Gaussian receptive field 
profile (Fig. 3b), the combined response becomes suppressed below 
the unimodal response to input 1. Hence, the model neuron exhi-
bits the spatial principle. The intuition for this result is simple: the  

less effective (that is, offset) input contributes little to the underlying 
linear response of the neuron, but contributes strongly to the 
 normalization signal because the normalization pool includes neu-
rons with receptive fields that span a larger region of space. Note 
that the model neuron exhibits inverse effectiveness for all of these 
stimulus conditions (Fig. 3c), although super-additivity declines as 
the spatial offset increases.

We examined data from two cat superior colliculus neurons that 
illustrate the spatial principle9,27 (Fig. 3d). Both neurons show cross-
modal enhancement when the spatial offset between visual and audi-
tory stimuli is small and a transition toward cross-modal suppression 
for large offsets. The normalization model captures the basic form of 
these data nicely (Fig. 3d). We are not aware of any published data that 
quantify the spatial principle for a population of neurons.

For the example neurons (Fig. 3d), responses to the offset stimulus 
were not presented9,27, so it is not clear whether cross-modal suppres-
sion occurs while the non-optimal stimulus is excitatory on its own. 
However, the normalization model makes a critical testable predic-
tion: in a specific stimulus domain, the less effective input 2 evokes 
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Figure 3 Normalization and the spatial principle 
of multisensory enhancement. (a) Schematic 
illustration of stimulus conditions used to 
simulate the spatial principle. Input 1 (+) was 
located at the center of the receptive field for 
modality 1 (red contours). Input 2 (×) was offset 
by various amounts relative to the receptive 
field for modality 2 (blue contours). Contours 
defining each receptive field are separated 
by 1 s.d. (σ) of the Gaussian. The modality 
dominance weights were equal (d1 = d2 = 1).  
(b) Responses of the model neuron to the 
stimuli illustrated in a (format as in Fig. 2b). 
Response is plotted as a function of intensity 
for input 1 (red), input 2 (blue) and the bimodal 
stimulus (black). Input 2 can be excitatory 
on its own (blue), but suppress the response 
to input 1 (red) when the two are combined 
(black, third column). (c) Additivity index as a 
function of stimulus intensity. (d) Two examples of the spatial principle for neurons from cat superior colliculus, re-plotted from refs 9,27. The response 
enhancement index (%) is plotted as a function of the spatial offset between visual and auditory stimuli (gray bars). Locations marked with an ‘x’ denote 
missing data in the original dataset. Predictions of the normalization model are shown as black curves. Model parameters (fit by hand) were d1 = d2 = 1.0, 
a = 1.0 and n = 2.0. Stimulus intensity was set at 16 for the top neuron and 64 for the bottom neuron.

Figure 2 Normalization accounts for the principle of the inverse 
effectiveness. (a) The bimodal response of a model unit is plotted as 
a function of the intensities of input 1 and input 2. Both inputs were 
located in the center of the receptive field. Diagonal line, inputs with 
equal intensities. Exponent, n = 2.0. (b) The bimodal response (solid 
black curve) and the unimodal responses (red and blue curves) are plotted 
as a function of stimulus intensity (from the diagonal of a). The sum of  
the two unimodal responses is shown as the dashed black curve. The red 
and blue curves have slightly different amplitudes to improve clarity.  
(c) Additivity index is plotted as a function of both input intensities. 
Additivity index > 1 indicates super-additivity and additivity index < 1 
indicates sub-additivity. (d) Additivity index values (from the diagonal of c)  
are plotted as a function of intensity for three exponent values: n = 1.0, 
2.0 and 3.0. (e) Data from cat superior colliculus, demonstrating inverse 
effectiveness (replotted from ref. 26). The z-scored bimodal response  
(± s.d.) is plotted against the predicted sum of the two unimodal responses, 
both for cross-modal (visual-auditory) inputs (black curve) or pairs of visual 
inputs (red). z score values > 1.96 represent significant super-additivity 
and values < –1.96 denote significant sub-additivity. (f) Model predictions 
match the data from cat superior colliculus. For this simulation, model 
neurons had all nine combinations of dominance weights from the set  
(d1, d2 = 0.50, 0.75 or 1.00), and the exponent, n, was 1.5.
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a clearly excitatory response on its own (Fig. 3b), but suppresses 
the response to the more effective input 1 when the two inputs are 
presented together. Analogous interactions between visual stimuli 
were demonstrated in V1 neurons and attributed to normalization17. 
Notably, the cross-modal suppression (Fig. 3b) appears to be a signa-
ture of a multisensory normalization mechanism, as alternative model 
architectures that do not incorporate normalization28,29 fail to exhibit 
this behavior (Supplementary Figs. 3 and 4).

An analogous empirical phenomenon is the temporal principle of 
multisensory integration, which states that multisensory enhancement 
is strongest when inputs from different modalities are synchronous and 
declines when the inputs are separated in time8. The normalization 
model also accounts for the temporal principle as long as there is vari-
ation in response dynamics (for example, latency and duration) among 
neurons in the population, such that the temporal response of the nor-
malization pool is broader than the temporal response of individual 
neurons (Supplementary Fig. 5). More generally, in any stimulus 
domain, adding a non-optimal (but excitatory) stimulus can produce 
cross-modal suppression if it increases the normalization signal enough 
to overcome the additional excitatory input to the neuron.

Multisensory suppression in unisensory neurons
Multisensory neurons are often much more responsive to one sen-
sory modality than the other. Responses of such neurons to the more 
effective input can be suppressed by simultaneous presentation of 
the seemingly non-effective input5,30. In the normalization model, 
each neuron receives inputs from primary sensory neurons with 
modality dominance weights that are fixed (Fig. 1), but the specific 
combination of weights (d1,d2) varies from cell to cell. We found 
that normalization accounts for response suppression by the non-
effective input.

We simulated responses for four model neurons (Fig. 4) with dif-
ferent combinations of modality dominance weights, ranging from 
balanced inputs (d1 = 1.0, d2 = 1.0) to strictly unisensory input  
(d1 = 1.0, d2 = 0). When modality dominance weights are equal  
(d1 = 1.0, d2 = 1.0), the model shows multisensory enhancement 
(Fig. 4b). As the weight on input 2 is reduced, the bimodal response 
declines along with the unimodal response to input 2. Notably, 
when d2 is approximately 0.5 or less, the bimodal response becomes 
suppressed below the best unimodal response (Fig. 4b). For the 
unisensory neuron with d2 = 0, input 2 evokes no excitation, but 
suppresses the combined response. This effect is reminiscent of cross-
orientation suppression in primary visual cortex18,31,32.

Normalization accounts for cross-modal suppression in unisensory 
neurons by similar logic used to explain the spatial principle: although 
input 2 makes no contribution to the linear response of the neuron 
when d2 = 0, it still contributes to the normalization signal via other 
responsive neurons with nonzero d2. This effect is robust as long as 
the normalization pool contains neurons with a range of modality 
dominance weights. Response additivity (Fig. 4c) again shows inverse 
effectiveness in all conditions, with super-additivity for weak, bal-
anced inputs.

To assess model performance quantitatively, we compared predic-
tions to an extensive dataset of multisensory responses of macaque 
ventral intraparietal (VIP) neurons to visual and tactile stimuli30. 
In this dataset, a measure of response additivity is plotted against 
a measure of multisensory enhancement (Fig. 4d). The pattern of 
data across the population of VIP neurons is largely reproduced by 
a subset of model neurons that vary along just two dimensions: the 
semi-saturation constant (a) and the ratio of dominance weights 
(d2/d1). Increasing the value of a shifts the intensity-response curve 
to the right and yields greater super-additivity for a fixed stimulus  

d1 = 1.0

Combined120

a

b

c

d
100

� = 16
� = 8
� = 4
� = 2
� = 1

Data

Cross-modal
suppression

Cross-modal
enhancement

Super-
additivity

1 d2/d1 = 1.0

d2/d1 = 1.0

d2/d1 = 0.75

U1 U2 Bi

d2/d1 = 0

2

3

4
Sub-

additivity

1

2
3

4

50

0

–50

–100 –50 0
Response enhancement

50 100
–100

100

80

F
iri

ng
 r

at
e

R
es

po
ns

e 
ad

di
tiv

ity

A
dd

iti
vi

ty
 in

de
x

60

40

2

1

0.5

0.25

20

0

Input 1
Input 2

0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

0 1 2 3 4 5 6 7 8 910 0 1 2 3 4
Log stimulus intensity: input 1, input 2

5 6 7 8 910 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

d2 = 1.0 d2 = 0.75 d2 = 0.5 d2 = 0
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Input 1 (+) and input 2 (×) were presented in the center of the receptive fields. (b) Responses as a function of intensity are shown for input 1 (red), 
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in the ratio of dominance weights (d2/d1, ranging from 0 to 1) and the semi-saturation constant, a, ranging from 1 to 16. The exponent, n, was 2.5. 
Numbered symbols correspond to model neurons for which responses are shown as bar graphs (right).
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intensity. For a fixed value of a, varying the ratio of dominance 
weights shifts the data from upper right toward lower left. Model 
neuron 4 (Fig. 4d) is an example of multisensory suppression in a 
unisensory neuron. Overall, a substantial proportion of variance 
in the VIP data can be accounted for by a normalization model 
in which neurons vary in two biologically plausible ways: overall 
sensitivity to stimulus intensity (a) and relative strength of the two 
sensory inputs (d2/d1).

Response to within-modal stimulus combinations
Previous studies have reported that two stimuli of the same sensory 
modality (for example, two visual inputs) interact sub-additively, 
whereas two stimuli of different modalities can produce super-
 additive interactions26. This distinction arises naturally from the 
normalization model if each unisensory pathway incorporates a sub-
linear nonlinearity (Fig. 1b) that could reflect synaptic depression or 
normalization operating at a previous stage.

We examined responses to two inputs from the same modality 
(input 1a and input 1b) for a model neuron (Fig. 5). Input 1a is pre-
sented at the center of the receptive field, while input 1b is systemati-
cally offset from the receptive field center (Fig. 5a). When both inputs 
are centered in the receptive field (Fig. 5b), the combined response 
is modestly enhanced. The corresponding additivity index curve  
(Fig. 5c) indicates that the interaction is additive for weak inputs and 
sub-additive for stronger inputs. This result contrasts sharply with 
the super-additive interaction seen for spatially aligned cross-modal 
stimuli (Figs. 2b and 3b). As input 1b is offset from the center of the 
receptive field (Fig. 5b), the combined response becomes suppressed 
relative to the stronger unisensory response. The additivity index 
curves demonstrate that the interaction is either additive or sub- 
additive for all spatial offsets (Fig. 5c).

Presenting two overlapping inputs from the same modality is 
operationally equivalent to presenting one input with twice the 
stimulus intensity. As a result of the sublinear nonlinearity in each 
unisensory pathway, doubling the stimulus intensity does not double 

the postsynaptic excitation. As a result, the combined response does 
not exhibit super-additivity for low intensities, even with an expansive 
output nonlinearity in the multisensory neuron (n = 2.0). For high-
stimulus intensities, the combined response becomes sub-additive 
as a result of normalization. If normalization were removed from 
the model, combined responses would remain approximately addi-
tive across all stimulus intensities (data not shown). For large spatial 
offsets and strong intensities, the combined response is roughly the 
average of the two single-input responses (Fig. 5b). Similar averaging 
behavior has been observed for superior colliculus neurons26, as well 
as neurons in primary18 and extrastriate33,34 visual cortex.

In the superior colliculus26, super-additivity was substantially 
reduced for pairs of inputs from the same modality (Fig. 2e) relative to 
cross-modal inputs. This difference is reproduced by the normaliza-
tion model (Fig. 2f) with a single set of model parameters. Hence, the 
inclusion of an input nonlinearity appears to account quantitatively 
for the difference in additivity of responses between cross-modal and 
within-modal stimulation.

Multisensory integration and cue reliability
We found that normalization accounts for key empirical principles 
of multisensory integration. We then examined whether the model 
can account for quantitative features of the combination rule by 
which neurons integrate their inputs. We recently demonstrated that 
bimodal responses of multisensory neurons in area MSTd are well 
approximated by a weighted linear sum of visual and vestibular inputs, 
but that the weights appear to change with visual cue strength11. To 
explain this puzzling feature of the multisensory combination rule, 
we performed a virtual replication of the MSTd experiment11 using 
model neurons. To capture known physiology of heading-selective 
neurons13,35, we modified the model architecture such that each 
cell had spherical heading tuning, lateral heading preferences were 
more common than fore-aft preferences, and many neurons had mis-
matched heading tuning for the two cues (see Online Methods and 
Supplementary Figs. 6 and 7).

Responses of model neurons were computed for eight heading 
directions in the horizontal plane using visual inputs alone, vestibular 
inputs alone, and all 64 combinations of visual and vestibular head-
ings, both congruent and conflicting. The bimodal response profile 
of an example neuron, Rbimodal(ϕvest, ϕvis), is plotted as a color con-
tour map, along with the two unimodal response curves, Rvest(ϕvest) 
and Rvis(ϕvis), along the margins (Fig. 6a). The intensity of the vesti-
bular cue was kept constant while the intensity of the visual cue was 
varied to simulate the manipulation of motion coherence used in 
MSTd11. At 100% coherence, the bimodal response is dominated by 
the visual input, as is typical of MSTd neurons11. As visual inten-
sity (motion coherence) is reduced, the bimodal response profile 
changes shape and becomes dominated by the vestibular heading 
tuning (Fig. 6a–c).

The bimodal response of each model neuron was fit with a weighted 
linear sum of the two unimodal response curves 

R w R w R Cbimodal vest vis vest vest vest vis vis vis( , ) ( ) ( )j j j j= ⋅ + ⋅ +

The mixing weights, wvest and wvis, were obtained for each of the three 
visual intensities, corresponding to motion coherences of 25, 50 and 
100%. This analysis was performed for model neurons with different 
combinations of modality dominance weights (dvest, dvis; all combina-
tions of values 0.25, 0.5, 0.75 and 1.0). Note that dvest, dvis characterize 
how each model neuron weights its vestibular and visual inputs and 
that these modality dominance weights are fixed for each neuron in 

(3)(3)
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Figure 5 Interactions among within-modality inputs. (a) The stimulus 
configuration was similar to that of Figure 3a except that two stimuli of 
the same sensory modality, input 1a (+) and input 1b (×) were presented, 
and one was systematically offset relative to the receptive field of modality 1  
(red contours). No stimulus was presented to the receptive field of 
modality 2 (blue contours). (b) Responses of a model neuron are shown 
for input 1a alone (solid red curve), Input 1b alone (dashed red curve) and 
both inputs together (black curve). (c) Additivity index as a function of 
stimulus intensity shows that model responses to pairs of within-modality 
inputs are additive or sub-additive with no super-additivity.
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the model. In contrast, wvest and wvis are weights that characterize  
the best linear approximation to the model response for each  
stimulus intensity.

For all visual intensities, the weighted linear fit was a good 
approximation to responses of model neurons, with average R2 
 values of 0.98, 0.96 and 0.96 for simulated coherences of 25, 50 and 
100%, respectively. Notably, different values of wvest and wvis were 
required to fit the data for different coherences. Specifically, wvest 
decreased with coherence (Fig. 6d) and wvis increased with coher-
ence (Fig. 6e). The slope of these dependencies was similar for all 
model neurons, whereas the absolute values of wvest and wvis varied 
somewhat with the modality dominance weights assigned to each 
neuron. To summarize this effect, we examined the average weight 
ratio, wvis/wvest, as a function of coherence, normalized to a value 
of 1 at 100% coherence (Fig. 6f). The results are similar to the data  
from area MSTd11, including the fact that weight changes are  
similar for cells with congruent and opposite heading preferences 
(Fig. 6d,e). Because this result depends mainly on response satura-
tion, it could also be predicted by other models that incorporate a 
saturating nonlinearity.

The effect of coherence on the visual and vestibular mixing weights 
can be derived from the equations of the normalization model, with a 
few simplifying assumptions (including n = 1.0). The mixing weights, 
wvest and wvis, can be expressed as (see Online Methods)

w
k c

k c c
w

k c
k c cvest

vest

vest vis
vis

vis

vest v
=

+ ⋅
+ ⋅ +

=
+ ⋅

+ ⋅ +
a

a
a

a( )
,

( iis )

Clearly, wvest declines as a function of visual intensity (cvis), whereas 
wvis rises as a function of cvis. In our simulations (Fig. 6), the exponent 
(n) was 2.0. In this case, the mixing weights become functions of the 
modality dominance weights (dvest, dvis) as well as stimulus intensities, 
resulting in vertical shifts among the curves (Fig. 6d,e).

In summary, normalization simply and elegantly accounts for the 
apparent changes in mixing weights exhibited by MSTd neurons  
as coherence was varied11. For any particular combination of stim-
ulus intensities, the behavior of the normalization model can be  

(4)(4)

approximated as linear summation, but the effective mixing weights 
appear to change with stimulus intensity as a result of changes in the 
net activity of the normalization pool.

DISCUSSION
We propose that divisive normalization can explain many fundamen-
tal response properties of multisensory neurons, including the empiri-
cal principles described in seminal work on the superior colliculus4,5 
and the effect of cue reliability on the neural combination rule in area 
MSTd11. The normalization model is attractive because it relies on 
relatively simple and biologically plausible operations36. Thus, the 
same basic operations that account for stimulus interactions in visual 
cortex17–19 and attentional modulation20 may also underlie various 
nonlinear interactions exhibited by multisensory neurons. The nor-
malization model may therefore provide a good computational foun-
dation for understanding multisensory cue integration.

Critical comparison with other models
Despite decades of research, quantitative models of multisensory 
integration have only recently been proposed28,29,37–40. One of the 
first mechanistic models of multisensory integration37,40 is a com-
partmental model of single neurons that accounts for inverse effec-
tiveness and sub-additive interactions between inputs from the same 
modality. It was also constructed to account for the modulatory effect 
of top-down cortical input on multisensory integration in the superior 
colliculus41,42. This model shares some elements with ours: it includes 
a squaring nonlinearity that produces super-additivity for weak inputs 
and a shunting inhibition mechanism that divides the response by 
the net input to each compartment. Notably, this model does not 
incorporate interactions among neurons in the population. Thus, it 
cannot account for the spatial principle of multisensory integration 
or cross-modal suppression in unisensory neurons. In addition, this 
model cannot account for the effects of cue reliability on the neural 
combination rule, as seen in area MSTd11.

In contrast with this compartmental model37,40, a recent neural 
network architecture28,29 incorporates lateral interactions among 
neurons with different receptive field locations. Similar to the  
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normalization model, this neural network model can account for 
inverse effectiveness and the spatial principle, but there are important 
conceptual differences between the two schemes. First, to produce 
inverse effectiveness, the neural network model28,29 incorporates 
a sigmoidal output nonlinearity into each model neuron (see also  
ref. 39). In contrast, in the normalization model, response saturation 
at strong intensities arises from the balance of activity in the network, 
not from a fixed internal property of individual neurons. Second, 
although the neural network model can produce cross-modal sup-
pression, it appears to do so only when the less effective input is no 
longer excitatory on its own29, but rather becomes suppressive as a 
result of lateral connections that mediate subtractive inhibition. We 
verified this observation by simulating an alternative model contain-
ing the key structural features of the neural network model28,29. This 
alternative model only produces cross-modal suppression when the 
non-optimal input is no longer excitatory (Supplementary Figs. 3 
and 4). Thus, the key testable prediction of the normalization model, 
that an excitatory non-optimal input can yield cross-modal suppres-
sion (Fig. 3), does not appear to be shared by other models of multi-
sensory integration. The divisive nature of lateral interactions in the 
normalization model appears to be critical for this prediction. Indeed, 
the alternative model does not account for the VIP data30 (Fig. 4d) as 
successfully as the normalization model (Supplementary Fig. 8).

A recent elaboration of the neural network model38 incorporates 
a number of specific design features to account for the experimental 
observation41–43 that inactivation of cortical areas in the cat gates 
multisensory enhancement by superior colliculus neurons. We have 
not attempted to account for these results in our normalization model, 
as it is intended to be a general model of multisensory integration, 
rather than a specific model of any one system.

A recent computational theory15 has demonstrated that popu-
lations of neurons with Poisson-like spiking statistics can achieve 
Bayes-optimal cue integration if each multisensory neuron simply 
sums its inputs. Thus, nonlinear interactions such as divisive nor-
malization are not necessary to achieve optimal cue integration. 
Because this theory15 involves simple summation by neurons, inde-
pendent of stimulus intensity, it cannot account for various empiri-
cal principles of multisensory integration discussed here, including 
the effects of cue reliability on the neural combination rule11. It is 
currently unclear what roles divisive normalization may have in a 
theory of optimal cue integration and this is an important topic for  
additional investigation.

Parallels with visual cortical phenomena
Divisive normalization was initially proposed16 to account for 
response properties in primary visual cortex. Normalization has often 
been invoked to account for stimulus interactions in the responses 
of cortical neurons17,19,33,44 and has been implicated recently in the 
modulatory effects of attention on cortical responses20. The appar-
ent ubiquity of divisive normalization in neural circuits36,45 makes 
normalization operating at the level of multisensory integration an 
attractive general model to account for cross-modal interactions.

Perhaps the clearest experimental demonstration of normalization 
comes from a recent study18 that measured responses of V1 neurons 
to orthogonal sine-wave gratings of various contrasts. This study 
found that population responses to any pair of contrasts can be well 
fit by a weighted linear sum of responses to the individual gratings. 
However, as the relative contrasts of the gratings varied, a linear model 
with different weights was required to fit the data18, as predicted by 
divisive normalization. This result closely parallels the finding11 that 
the multisensory combination rule of MSTd neurons depends on the 

relative strengths of visual and vestibular inputs. Here, we found that 
multisensory normalization can account for analogous phenomena 
observed in multisensory integration11.

In summary, empirical principles of multisensory integration have 
guided the field for many years4, but a simple computational account 
of these principles has been lacking. We found that divisive normali-
zation accounts for the classical empirical principles of multisensory 
integration as well as recent findings regarding the effects of cue relia-
bility on cross-modal integration. The normalization model is appeal-
ing for its simplicity and because it invokes a functional operation that 
has been repeatedly implicated in cortical function. Moreover, the 
model makes a key prediction, that a non-optimal excitatory input can 
produce cross-modal suppression, which can be tested experimen-
tally. Although this prediction has not yet been tested systematically, a 
careful inspection of published data10,30,46 reveals some examples that 
may demonstrate cross-modal suppression by a non-optimal excita-
tory input, although it is generally not clear whether the non-optimal 
input is significantly excitatory. We systematically examined cross-
modal suppression in area MSTd and preliminary results support the 
model predictions (T.O., D.E.A. & G.C.D., unpublished observations). 
Thus, normalization may provide a simple and elegant account of 
many phenomena in multisensory integration.

METHODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Two different versions of the normalization model were simulated: one to model 
multisensory spatial integration in the superior colliculus and area VIP (Fig. 1), 
and the other to model visual-vestibular integration of heading signals in area 
MSTd (Supplementary Figs. 6 and 7).

Spatial model: primary sensory neurons. Each unimodal input to the spatial 
integration model is specified by its intensity c and its spatial position in Cartesian 
coordinates, θ = (xθ, yθ). The spatial receptive field of each primary sensory 
 neuron is modeled as a two-dimensional Gaussian 

G( ; ) exp
( )q q q q

s
= − − 2

22
ˆ ˆ

where ˆ ( , )ˆ ˆq q q= x y represents the center location of the receptive field.  
Arbitrarily, x yˆ ˆ,q q  take integer values between 1 and 29, such that 
there are 29 × 29 = 841 sensory neurons with distinct q̂  in each primary  
sensory layer. The size of the receptive field, given by σ, was chosen to be 2  
(arbitrary units).

The response of each primary sensory neuron was assumed to scale linearly 
with stimulus intensity, c, such that the response can be expressed as 

c ⋅G( ; )q qˆ

In addition, we assume that two inputs of the same sensory modality, presented at 
spatial positions θ1a, θ1b, interact linearly such that the net response is given by 

c G c G1a 1a 1b b⋅ + ⋅( ; ) ( ; )q q q q1
ˆ ˆ

where c1a, c1b represent the intensities of the two inputs.
We further assume that the linear response in each unisensory pathway is 

transformed by a nonlinearity, h(x), such that the unisensory input is given by 

h c G( ( ; ))⋅ q qˆ

We used a sublinearly increasing function, h x x( ) =  to model this nonlinearity, 
although other monotonic functions such as log( )x + 1  or x

x + 1
 appear to work 

equally well. This nonlinearity models the sublinear intensity response functions 
often seen in sensory neurons47. It might reflect synaptic depression22 at the 
synapse to the multisensory neuron or normalization operating in the unisensory 
pathways. This input nonlinearity, h(x), has little effect on the multisensory inte-
gration properties of model neurons, but it is important for responses to multiple 
unisensory inputs (Fig. 5).

Spatial model: multisensory neurons. Each multisensory neuron in the model 
receives inputs from primary neurons of each sensory modality, as denoted by 
a subscript (1 or 2). The multisensory neuron performs a weighted linear sum 
of the unisensory inputs 

E d d c c d h c G d h c G( , , , ; , , , ) ( ( ; )) (1 1 2 2 1 1 2 2 1 1 1 1 1 2 2q q q q q q= ⋅ ⋅ + ⋅ ⋅ 22 2 2( ; ))q qˆ ˆ ˆ ˆ

The modality dominance weights, d1 and d2, are fixed parameters of each multi-
sensory neuron and each weight takes one of five values: 1.0, 0.75, 0.5, 0.25 or 0. 
Thus, 5 × 5 = 25 multisensory neurons with distinct combinations of modality 
dominance weights are included for each set of unisensory inputs. The linear 
response of the ith neuron Ei (equation (9)) is then subjected to an expansive 
power-law output nonlinearity and divisively normalized by the net response of 
all other units, to obtain the final output (Ri) of each neuron 

R
E

N
E

i
i
n

n
j
n

j
N

=
+ 



 =∑a 1

1

Here, a is a semi-saturation constant (fixed at 1.0), N is the total number of 
multisensory neurons, and n is the exponent of the power-law nonlinearity that 
represents the relationship between membrane potential and firing rate17,23, 
The exponent, n, was assumed to be 2.0 in our simulations, except where noted 

(5)(5)

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)

(Fig. 2d). Model responses were simulated for the following stimulus intensities: 
c1, c2 = 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1,024.

To compare model responses to the physiological literature, an additivity index 
(AI) was computed as the ratio of the bimodal response to the sum of the uni-
modal responses 

AI
R

R R
=

+
bimodal

unimodal 1 unimodal 2

Runimodal 1, Runimodal 2 are obtained by setting one of the stimulus intensities,  
c1 or c2, to zero.

In the simulations of Figures 2–5, the receptive fields of the two primary 
sensory neurons projecting to a multisensory neuron were assumed to be spa-
tially congruent ( ˆ ˆq q1 2= ). In total, there were 841 (receptive field locations) × 
25 (modality dominance weight combinations) = 21,025 distinct units in the 
multisensory layer.

For the simulations of Figure 2f, the exponent (n) was fixed at 1.5, and responses 
were generated for all nine combinations of three dominance weights: d1, d2 = 0.50, 
0.75 or 1.00. Five neurons having each combination of dominance weights were 
simulated, for a total population of 45 neurons (similar to that recorded previ-
ously26), Responses were computed for five stimulus intensities (4, 16, 64, 256 
and 1,024), Poisson noise was added and eight repetitions of each stimulus were 
simulated. A z score metric of response additivity was then computed using a boot-
strap method7,26. Within-modal responses were also simulated (Fig. 2f) for pairs of 
stimuli of the same sensory modality, one of which was presented in the receptive 
field center while the other was offset from the receptive field center by 1σ.

For the simulations of Figure 4d, responses were generated for model neurons 
with all possible combinations of five dominance weights (d1,d2 =  0, 0.25, 0.50, 
0.75 or 1.00) except d1 = d2 = 0, and semi-saturation constants (a) taking values 
of 1, 2, 4, 8 or 16. The exponent (n) was fixed at 2.5 for this simulation. Two 
cross-modal stimuli with intensity = 1,024 were presented at the receptive field 
center to generate responses.

To replot published data (Figs. 2e and 4d), a high-resolution scan of the origi-
nal figure was acquired and the data were digitized using software (Engauge, 
http://digitizer.sourceforge.net/). To replot the experimental data in Figure 3d, 
peristimulus time histograms from the original figure were converted into binary 
matrices using the ‘imread’ function in MATLAB (MathWorks). Spike counts 
were tallied from the digitized peristimulus time histograms and used to compute 
the enhancement index.

Visual-vestibular heading model. To simulate multisensory integration of head-
ing signals in macaque area MSTd (Supplementary Fig. 6), the normalization 
model was modified to capture the basic physiological properties of MSTd neu-
rons. Because heading is a circular variable in three dimensions13, responses of 
the unisensory neurons (visual, vestibular) were modeled as 

c
c⋅ ⋅ + + ⋅ −1

100

1

2

100

100

cos( )f x

Here, c represents stimulus intensity (for example, the coherence of visual motion) 
ranging from 0–100, and φ represents the angle between the heading prefer-
ence of the neuron and the stimulus heading. φ can be expressed in terms of the  
azimuth (ĵ̆q ) and the elevation (q̂ ) components of the heading preference, as well 
as azimuth (ϕ) and elevation (θ) components of the stimulus

F = ⋅arccos( )Ĥ H

where ˆ [ ˆ ˆ , ˆ ˆ , ˆ]H = ⋅ ⋅cos cos cos sin sinq j q j q  and H = ⋅ ⋅[cos cos ,cos sin ,sin ]q j q j q .  
The dot operator denotes the inner product of the two vectors.

In the spatial model (equations (5–10)), we assumed that stimulus intensity 
multiplicatively scales the receptive field of model neurons. However, in areas MT 
and MST, motion coherence has a different effect on directional tuning48,49. With 
increasing coherence, the amplitude of the tuning curve scales roughly linearly, 
but the baseline response decreases48. To model this effect (see Supplementary 
Fig. 7d), we included the right-hand term in equation (12), with ξ in the range 
from 0 to 0.5 (typically 0.1), such that total population activity is an increasing 
function of c. However, our conclusions regarding changes in mixing weights with 
coherence (Fig. 6d–f) do not depend appreciably on the value of ξ.

(11)(11)

(12)(12)

(13)(13)
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Each model MSTd neuron performs a linear summation of its visual and  
vestibular inputs 

E d c
c

d c

= ⋅ ⋅ + + ⋅ −

+ ⋅ ⋅ +

vest vest
vest vest

vis vis

(
cos( )

)

(

1

2

100

100
1

f x

ccos( )
)

f xvis vis
2

100

100
+ ⋅ − c

where dvest, dvis are the modality dominance weights which take values from the 
array [1.0, 0.75, 0.5, 0.25, 0]. In equation (14), the input nonlinearity h(x) was 
omitted for simplicity, because it has little effect on the multisensory integration 
properties of model neurons, including the simulations of Figure 6 (data  
not shown).

In area MSTd, many neurons have heading tuning that is not matched for visual 
and vestibular inputs13. Thus, the model included multisensory neurons with 
both congruent and mismatched heading preferences. Our model also incorpo-
rated the fact that there are more neurons tuned to the lateral self-motion than 
fore-aft motion13,35. Specifically, two random vector variables, ( , )j qvest vest

ˆˆ  and 
( , )j qvis vis

ˆˆ , were generated to mimic the experimentally observed distributions of 
heading preferences (Supplementary Fig. 7a,b) and visual and vestibular heading 
preferences were then paired randomly (200 pairs). To mimic the finding that 
more neurons have congruent or opposite heading preferences than expected by 
chance13, we added 28 units with congruent heading preferences, and another 28 
with opposite preferences (Supplementary Fig. 7c). Combining these factors, a 
population of 256 (heading preference combinations) × 25 (dominance weight 
combinations) = 6,400 units comprised our MSTd model. The linear response of 
each unit (equation (14)) was squared and normalized by net population activity, 
as in equation (10). The semi-saturation constant was fixed at 0.05.

In the simulations of Figure 6, motion coherence took on values of 25, 50 
and 100%, while the intensity of the vestibular input was fixed at 50, reflecting 
the fact that vestibular responses are generally weaker than visual responses in 
MSTd50. In equation (3), baseline activity (cvis = cvest = 0) was subtracted from 
each response before the linear model was fit. In MSTd11, the effect of coherence 
on the mixing weights, wvest and wvis, did not depend on the congruency of visual 
and vestibular heading preferences. To examine this in our model (Fig. 6d–f), we 
present results for three particular combinations of heading preferences, congru-
ent ( ˆ , ˆj jvest vis= ° = °90 90 ), opposite ( ˆ , ˆj jvest vis= ° = °90 270 ) and intermediate 
( ˆ , ˆj jvest vis= ° = °90 180 ), all in the horizontal plane ( ˆ ˆq qvest vis= = °0 ). Note, 
however, that all possible congruencies are present in the model population 
(Supplementary Fig. 7c). For each congruency type, all possible combinations of 
modality dominance weights from the set (d1, d2 = 1.0, 0.75, 0.5, 0.25) were used. 
Thus, we simulated responses for a total of 3 (congruency types) × 16 (dominance 
weight combinations) = 48 model neurons (Fig. 6d–f). For each congruency 
type, simulation results were sorted into three groups according to the ratio of 
dominance weights: dvest/dvis ≤ 0.5, 0.5 < dvest/dvis < 2.0, or 2.0 ≤ dvest/dvis. Data 
were averaged within each group. Thus, results are presented (Fig. 6d–f) as nine 
curves, corresponding to all combinations of three congruency types and three 
weight ratio groups.

derivation of the cue-reweighting effect. Here, we derive the expression for the effec-
tive mixing weights of the model MSTd neurons (equation (4)) through some simpli-
fication and rearrangement of the equations for the normalization model. Assuming 
that the exponent (n) is 1 and that tuning curves simply scale with stimulus intensity 
(ξ = 0), the net population activity in response to a vestibular heading (ϕvest) with 
intensity cvest and a visual heading (ϕvis) with intensity ϕvis, can be expressed as

( ( ˘ ; )˘˘ d c F ddd vestvest vest vest vest vest vestvisvis jj j j∑∑∑∑ ⋅ ⋅ + vvis vis vis vis vis

vestvisvis

⋅ ⋅

= ∑∑∑∑
c F

ddd vestvest

( ˘ ; ))

(˘˘

j j

jj ⋅⋅ ⋅ +

∑∑∑∑
c F

ddd vestvest

vest vest vest vest

visvisvis

( ˘ ; ))

(˘˘

j j

jj ⋅⋅ ⋅c Fvis vis vis vis( ˘ ; ))j j

q̂

q̂

q̂

q̂

q̂

q̂ q̂

q̂

q̂ q̂

(14)(14)

(15)(15)

where ˆFvest vest vest( ; )j j , Fvis vis vis( ; )j jˆ  represent vestibular and visual tuning 
curves with heading preferences at ĵvest and ĵvis, respectively. Because heading 
preferences and dominance weights are randomly crossed in the model popula-
tion, we can assume that this expression can be factorized 
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If we make the additional simplification that heading preferences, ĵvest and 
ĵvis, are uniformly distributed, then terms involving sums of tuning curves, 

Fvest vest vest

vest

( ; )j j
j
∑

ˆ
ˆ  and 

ˆ
Fvis vis vis

vis

( ; )j j
j
∑ ˆ  become constants. Moreover, 

the summations d
d

vest

vest

∑  and d
d

vis

vis

∑  are also constants because dvest, dvis are 

fixed parameters in the model. With these simplifications, equation (15) can be 
expressed as 

k c c⋅ +( )vest vis

where k is a constant that incorporates the sums of tuning curves and dominance 
weights. The bimodal response of a model neuron can now be expressed as 

R

d c F d
bimodal vest vis

vest vest vest vest vest vis

( , )

( ; )

j j
j j= ⋅ ⋅ + ⋅ cc F

k c c
vis vis vis vis

vest vis

⋅
+ ⋅ +

( ; )

( )

j j
a

ˆ ˆ

Unimodal responses can be obtained by setting one of the stimulus intensities, 
cvest or cvis, to zero 

R
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With these simplifications, the bimodal response (equation (18) can be expressed 
as a weighted linear sum of the unimodal responses, with weights that depend 
on stimulus intensity 
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Comparing equations (3) and (20), the closed forms of the mixing weights 
 (equation (4)) are obtained.

(16)(16)
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species. Given this, the persistent failure to 
find a unique initiator of puberty is not sur-
prising. Multiple GnRH subpopulations 
with different activating afferent networks 
would be advantageous to survival; traits 
that can enhance fertility are often selected 
for. Redundancy in the control of GnRH neu-
rons does not take away from the importance 
of any of the mediators involved, including 
kisspeptin. All are parts of an intricate net-
work that weighs many factors, both proximal 
and distal, to determine whether fertility is 
appropriate for an individual under the par-
ticular conditions to which that individual is 
exposed; this network ultimately produces 
appropriately patterned GnRH release. The 
next phase of this journey is to understand 
how all of these factors interact with the 
intrinsic properties of GnRH neurons to 
determine their output.
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it is therefore likely that both ARC and AVPV 
neurons were affected by a treatment at day 20. 
There are other lines of investigation worthy of 
pursuit. What are the neurobiological mecha-
nisms for compensation during development  
and are these similar to or distinct from 
those that maintain some degree of fertility 
after adult-induced GPR54 ablation? What 
is the contribution to phenotype of ablating  
kisspeptin- and GPR54-expressing cells out-
side of the nervous system? Does adult abla-
tion of GPR54 signaling alter the response of 
the reproductive system to steroid feedback or 
to other cues that have been controversially 
proposed to be conveyed to GnRH neurons 
by kisspeptin, such as metabolic cues14,15? 
Can the roles of ARC and AVPV kisspeptin 
be more clearly parsed? What is the effect of 
these targeted neuronal ablations on puberty 
and fertility in male mice? And, of course, does 
this finding translate to humans?

The pubertal onset of proper GnRH neuron 
function is vital to the survival of vertebrate 

(principle of inverse effectiveness). A second 
example is known as the spatial principle: an 
ineffective stimulus in one sensory modality 
(for example, a visual stimulus placed off the 
center of a superior colliculus neuron’s recep-
tive field) can suppress the response to a highly 
effective stimulus from the other modality 
(such as an auditory tone positioned in the 
optimal spatial location).

A similar observation to the spatial princi-
ple, and perhaps one that led Ohshiro et al.1 to 
their eventual hypothesis, has been extensively 
studied in the visual system. In primary visual 
cortex, neurons are tuned for the orientation 
of lines or bars. Ineffective stimuli, such as 
bars that are orthogonal to the neuron’s pre-
ferred orientation, can suppress the response 
to effective stimuli when the two are presented 
together5. This observation is particularly 
interesting when the ineffective stimulus is 
weakly excitatory when it is presented on its 
own. In that case, a simple model that linearly 
sums excitatory and inhibitory inputs would 
not predict any suppression. A straightforward 
mechanism, divisive normalization, is usually 
invoked to explain visual effects such as this. 
According to this mechanism, neurons receive 

The author is at the Cold Spring Harbor Laboratory, 

Cold Spring Harbor, New York, USA. 

e-mail: churchland@cshl.edu 

In the past century, sensory neuroscience has 
provided a basis for understanding the opera-
tion of individual senses, such as vision, hear-
ing and touch. This approach has revealed 
much about how neurons in sensory areas 
corresponding to these modalities process 
information and ultimately drive perception. 
However, the approach leaves unexplored the 
very realistic scenario in which an object in 
the world activates more than one sensory 
system at the same time. When localizing a 
moving object, for example, both the sound 
and light emitted from the object provide 
cues about where it is (Fig. 1). Because the 
information provided by each sense alone is 
often noisy or unreliable, combining infor-
mation across modalities, a process known as 
multisensory integration, affords the oppor-
tunity to improve one’s estimate about the 
object in question. Despite its importance in 
sensory processing, much about the neural 
computations that underlie multisensory 
integration remain unknown. In this issue of 

Nature Neuroscience, Ohshiro et al.1 describe 
a computational principle, divisive normal-
ization, on which multisensory integration 
seems to rely1.

Ohshiro et al.’s1 observations were moti-
vated by a foundation of knowledge about 
how the responses of single neurons change 
when they are faced with single-sensory versus  
multisensory inputs. This understanding 
developed largely from observations in the 
superior colliculus, an area in which audi-
tory and visual inputs converge at the level of 
single neurons (Fig. 1). More recent observa-
tions come from the authors’ own laboratories, 
where they have examined responses to visual 
and vestibular stimuli in the medial superior 
temporal area (MST)2,3. In both areas, neurons 
often respond more to multisensory input than 
to single-sensory input, a phenomenon known 
as multisensory enhancement.

These studies have led to a collection of 
principles that govern multisensory inte-
gration at the level of single neurons4. The 
principles include, for instance, the observa-
tion that the greatest degree of multisensory 
enhancement is observed when the stimulus 
presented to each individual sense is very weak 

normalizing relations between the senses
Anne K Churchland

An established framework that describes how visual neurons combine their inputs, divisive normalization, proves 
valuable in explaining multisensory processing in the superior colliculus and medial superior temporal area.
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excitatory drive from a narrow range of inputs; 
this excitatory drive is mitigated (through nor-
malization) by a broader pool of inputs (Fig. 1).  
In other words, a normalization pool  containing 
neurons driven by all sorts of  stimuli is used to 
divide a more narrowly tuned  excitatory drive. 
Notably, diminishing a  neuron’s response 
through normalization is rather different from 
doing so through traditional inhibitory mecha-
nisms such as subtraction. The normalization 
step serves to scale existing signals, rather than 
introduce a new signal in the way that inhibi-
tion does. This mechanism has been an essen-
tial component of models of visual processing 
for some time and has even been used to unite 
seemingly conflicting reports about visual 
attention6. In spite of its ubiquitous use in the 
visual system, however, it has been notably 
absent as a candidate mechanism for under-
standing interactions between vision and other 
sensory modalities.

Ohshiro et al.1 used divisive normalization to 
explain a variety of effects seen in multisensory 
neurons in the superior colliculus and MST. 
The broadly tuned normalization pool turned 
out to be critical for explaining multi sensory 
effects such as the spatial principle. In our 
example above, the visual stimulus was ineffec-
tive because it was not optimally positioned in 
the receptive field of the neuron being studied. 
Thus, it didn’t elicit much response on its own. 
However, the same stimulus provided an opti-
mal input to different neurons that, crucially, 
are included in the larger group of neurons 
that constitutes the normalization pool for the 

neuron being studied. These neurons serve to 
suppress the response, even when they supply 
only a weak excitatory drive. The same mech-
anism explains why neurons in multisensory 
areas that are almost entirely driven by one 
sensory stimulus can nevertheless show sup-
pression when the two sensory modalities are 
presented together; the non-optimal modality 
drives neurons in the normalization pool that 
serve to suppress the excitatory inputs.

Previous models that have attempted to 
explain the spatial principle7 have relied on 
the idea that the suppression results from 
the second modality eliciting an inhibitory 
response. However, this type of mechanism 
fails to explain how single-sensory inputs 
that are weakly excitatory on their own still 
serve to suppress the response to an optimal 
stimulus. Because previous experiments have 
not set out to directly test divisive normaliza-
tion against simple inhibitory models, it is 
not clear whether cross-modal suppression 
by weakly excitatory stimuli is a reliable or 
robust effect. Future experiments that make 
this comparison will directly test whether 
divisive normalization is a necessary feature 
of multisensory integration.

Previous models that have attempted to 
explain the principle of inverse effectiveness8,9 
share some common features with the model 
proposed by Ohshiro et al.1. Specifically, these 
models explain the effect of using a squaring 
nonlinearity that causes weak inputs to have 
a superadditive effect. However, because  
previous models mainly rely on interactions of 

inputs in a single neuron, they can’t explain the 
spatial principle or cross-modal suppression, 
both of which rely on interactions between 
populations of neurons with different tuning 
properties. Furthermore, the single-neuron 
models, at least in their present form, cannot 
account for recent data regarding changes in 
the weighting of sensory inputs in relation 
to their reliability10. The divisive normaliza-
tion model accounts nicely for these findings; 
specifically, the model accurately predicts a 
complex pattern of weight changes that was 
observed10 when a visual stimulus gradually 
changes in reliability alongside a vestibular 
stimulus of constant reliability.

Insights into how the brain combines 
inputs from different modalities constitute a 
major advance toward a full understanding 
of perception. Ultimately, when we perceive 
the world, we not only combine information 
across sensory modalities, but also integrate 
that sensory information with our existing 
knowledge about the structure of the world, 
for example, our memories about specific 
objects and our predictions for their future 
behavior. An appealing possibility raised by 
the new findings is that signals such as these 
might be combined with sensory inputs using 
straightforward computational principles 
similar to those that have been uncovered by 
existing studies of sensory processing. Perhaps 
a prior belief about the statistics of the world 
(for example, an idea garnered from a life of 
experience about how fast mosquitoes tend 
to fly) contributes to both the excitatory 
inputs and the normalization pool and can be 
thought of as just another cue that is combined 
with the others to form a coherent percept of 
the world.
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Figure 1  Neural pathways for multisensory integration. Visual and auditory information from a 
mosquito provide information about its location to an onlooker. Information from visual neurons (green) 
and auditory neurons (orange) provide excitatory drive (solid lines) to neurons in a multisensory area 
(such as the superior colliculus). A broader set, which includes both the excitatory neurons and some 
differently tuned neighbors, constitutes the ‘normalization pool’ that serves to mitigate the excitatory 
drive (dashed lines).
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Supplemental Materials for “A Normalization Model of Multisensory 
Integration” by Ohshiro, Angelaki and DeAngelis 

 
 
Supplementary Figures and Legends 
 
 

 
 
Supplementary Figure 1. Inverse effectiveness and cross-modal suppression 
for stimuli that are centered or mis-centered on the unimodal receptive fields. 
 (A) Schematic illustration of the locations of Input 1 (‘+’) and Input2 (‘x’) relative to 
the receptive fields (red and blue contours). Conventions as in Figure 3A. (B) 
Bimodal response of a model neuron with balanced dominance weights (d1 = d2 = 
1.0) is plotted as a function of the stimulus intensities of Input1 and Input2. (C) AI is 
plotted as a function of stimulus intensity. A gradual change in additivity from super- 
to sub-additivity (inverse effectiveness) can be observed for all four combinations of 
input locations. Thick contour lines indicate AI=1. (D) The ratio of the bimodal 
response to the larger of the two unimodal responses (cross-modal suppression 
index) is plotted as a function of stimulus intensity. Thick contour lines indicate that 
the cross-modal suppression index = 1. Regions with ratios <1 denote portions of the 
stimulus space in which cross-modal suppression takes place. Note that the cross-
modal suppression occurs when the effectiveness of the two unisensory inputs is 
substantially different (second and third columns) but not when the inputs are 
balanced (first and fourth columns).  
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Supplementary Figure 2. Inverse effectiveness and cross-modal suppression 
for a model neuron with imbalanced modality dominance weights (d1 = 1.0, d2 = 
0.5).  
 (A) The receptive fields and the stimulus locations relative to the receptive field are 
illustrated schematically. Format as in Supplementary Figure 1. (B) Bimodal 
response is plotted as a function of the stimulus intensities of Input1 and Input2. (C) 
AI is plotted as a function of stimulus intensities. Super-additive interactions and 
inverse effectiveness can be observed for weak stimulus intensities in all 
configurations. (D) Cross-modal suppression is exaggerated when the modality 
dominance weights are not balanced (compare the first two columns with those of 
Supplementary Fig. 1D).  Note that cross-modal suppression is not observed in the 
third column, where the reduced dominance of Input 2 (blue contour) is matched by 
Input 1 being displaced from the center of the receptive field. 
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Supplementary Figure 3. Alternative multisensory integration model with a 
recurrent network architecture and subtractive inhibition   
(A) Schematic illustration of the alternative model architecture that captures the basic 
design features of the multisensory integration models proposed by Magosso et al. 1 
and Ursino et al. 2. Each multisensory neuron (black circles) performs a weighted 
linear sum of inputs from primary sensory neurons (red, blue circles). Synaptic 
weights for the lateral connections between multisensory neurons are described by 
the weight matrix, ܯ,. (B) Illustration of the “Mexican hat” shaped weight matrix, ܯ,, which provides subtractive lateral inhibition. (C) Total synaptic input to the j th 
neuron (ܫ) is transformed into firing rate by a sigmoidal activation function, g(). This 
nonlinearity, which can produce super-additivity for weak intensities and sub-
additivity for strong intensities, is therefore built into each neuron in this model. (D) 
Responses of a model neuron to multisensory inputs with different degrees of offset 
between Input1 and Input2. Format as in Fig. 3B. The combined response (black) is 
suppressed below the unimodal response to Input1 (red) only when the Input2 is 
offset from the RF center by more than 2.5 x σ (columns 5 and 6), such that Input2 
becomes inhibitory on its own. Note that crossmodal suppression does not occur 
while Input2 (blue) is excitatory. (E) Additivity Index (AI) is plotted as a function of 
stimulus intensity.  
 Methods: The temporal dynamics of the response are given by: ߬ כ ௗூೕௗ௧ ൌ  െܫ  ܧ   ߚ  כ ∑ ,ܯ כ ݃ሺܫሻ    …… (S1) 

In this equation, Ij represents the synaptic current in the j th multisensory neuron; ܧ, 
the linear sum of the two unisensory inputs as defined in Eqn. (9); ܯ,, the synaptic 
weights for lateral interactions between the k th, and j th multisensory units; ݃ሺ ሻ , a 
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sigmoidal activation function which transforms the synaptic current to the firing rate; 
and ߚ, the coupling constant for the lateral interactions.  

This alternative model and the normalization model both have primary 
sensory neurons with the same response properties, and both incorporate weighted 
linear summation of inputs (i.e., the term ܧ) to the multisensory neurons. For 
simplicity, RFs for both modalities are spatially congruent, and the dominance 
weights (݀ଵ, ݀ଶ) are set to 1.0 in the simulations of Supplementary Figs. 3 and 4. As 
the non-linear function ݄ሺሻ in ܧ, we used a hyperbolic ratio function, ݄ሺݔሻ  ൌ  5 כ ݔ ሺݔ  128ሻ⁄  to be consistent with the models of Ursino and colleagues. 

We assume that the synaptic weights for the lateral interactions between 
multisensory neurons follow a Mexican hat profile 1, 2 of the following form:  

,ܯ  ൌ ௧ܭ  כ ,ଶܦ൛െݔ݁ ሺ2 כ ௧ଶߪ ሻ⁄ ൟ െ ௦௨௨ௗܭ  כ ,ଶܦ൛െݔ݁ ሺ2 כ ⁄௦௨௨ௗଶߪ ሻൟ  
…..(S2) 

 
where, ܦ, represents the topological distance between the k th, and j th unit. ߪ௧ 
and ߪ௦௨௨ௗ are set to values of 2 and 4, respectively. ܭ௧ and  ܭ௦௨௨ௗ 
represent the strengths of the excitatory center component and the inhibitory 
surround component of ܯ,, respectively. Both are set to 1 as a default (but see 
Supplementary Figure 4). With these settings, the input arising through the lateral 
connections ( ∑ ,ܯ כ ݃ሺܫሻ  ) is always negative (because ܯ,  0, ݃ሺܫሻ  0ሻ; 
thus, it has an inhibitory influence on the unit’s response. The coupling constant ߚ 
was set to 0.2. We used a hyperbolic ratio function as the sigmoidal activation 
function, ݃ሺݔሻ  ൌ  100 כ ଶݔ ሺݔଶ  1ଶሻ ݂ݔ ݎ  0, ܽ݊݀ ݃ሺݔሻ ൌ ⁄݁ݏ݅ݓݎ݄݁ݐ 0 , although 
other formulations of a sigmoid would produce similar results. Note that, as Eqn. S1 
shows, inhibition mediated through the lateral connections has a subtractive form.  
The excitatory input from primary neurons (ܧ) is reduced by an amount proportional 
to the activity of surrounding neurons ( ∑ ,ܯ כ ݃ሺܫሻ  ሻ. This key difference in the 
mode of lateral interactions (subtractive versus divisive) results in the distinct 
behavior of the alternative model and the normalization model with respect to cross-
modal suppression.  
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Supplementary Figure 4. Summary of crossmodal suppression results, 
comparing the normalization model and the alternative model.  
Unimodal responses to Input1 (red) or Input2 (blue), along with combined responses 
(black), are plotted as a function of the offset of Input2 relative to the RF center. 
Input1 is always presented at the center of the RF. Stimulus intensity for both inputs 
is fixed at 1024. (A) Prediction of the normalization model. The combined response 
(black) clearly starts to be suppressed below the response to Input1 (red) when 
Input2 is offset from the RF center by more than roughly 1*σ  (dashed vertical line). 
The unimodal response to Input2 is still clearly excitatory until the offset reaches 
roughly 3*σ. (B) Predictions of the alternative model. The combined response is 
suppressed below the response to Input1 only when the offset is more than 
2.5*σ (dashed vertical line). Input2 is no longer excitatory for offsets > 2.5*σ. Thus, 
cross-modal suppression in the alternative model only occurs when the non-optimal 
Input2 becomes inhibitory as a result of the subtractive lateral inhibition. The profile 
of connection weights ܯ, used in this simulation (same as in Supplementary Fig. 3) 
is depicted on the right. (C-E) Predictions of the alternative model for different forms 
of the lateral inhibition connection weights, ܯ,: one case with stronger excitatory 
interactions between nearby neurons (C), one case with exclusively inhibitory 
interactions between neurons (D), and one case with spatially uniform inhibitory 
interactions among all neurons in the population (E). Note that the behavior of the 
alternative model, with respect to cross-modal suppression, depends little on the 
particular form of ܯ, 
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Supplementary Figure 5. Normalization can account for the temporal principle 
of multisensory integration. 
(A) Temporal profiles of the excitatory input to a model neuron (solid red curve) and 
the normalization signal (dashed red curve). The scaling of the time axis is arbitrary. 
We assume that response latency and duration vary among neurons, such that the 
normalization pool has a broader temporal response than individual units. (B) Model 
responses to bimodal stimuli presented at four temporal disparities (0, 2, 4, 6 ms) 
between the onset of the two stimuli. Red and blue curves show unimodal responses 
to Inputs 1 and 2, respectively. The black curve represents the bimodal response, 
and the dashed magenta curve shows the sum of the two unimodal responses. (C) 
The index of multisensory enhancement (defined below) declines with the temporal 
disparity of the two stimuli for model neurons (black curve), whereas the sum of the 
two unimodal responses is constant (magenta). (D) The peak discharge rate of the 
bimodal response (black) is suppressed below that of the unimodal response (red 
line) for large temporal disparities, whereas the peak discharge of the sum of 
unisensory responses (magenta) never falls below the red line.  

Methods. The normalized bimodal response is modeled as: ݎሺݐሻ ൌ  ൫ܿଵ כ ݀ଵ כ ܩ భ்,ఙభ  ܿଶ כ ݀ଶ כ ܩ మ்,ఙమ ൯ଶሺ0.09ሻଶ  ൫ܿଵ כ ܩ భ்,ఙಿభ  ܿଶ כ ܩ మ்,ఙಿమ ൯ଶ 

where ܿଵ, ܿଶ represent the stimulus intensities of input1 and 2, taking values of 0 or 1. ݀ଵ, ݀ଶ are dominance weights of the model neuron, both set at 1.0. ்ܩ,ఙ represents a 
Gaussian function with a standard deviation of ߪ and a peak at ܶ. ߪଵ, ,ଶߪ  ேଶߪ ேଵ andߪ
were assumed to be 2.0, 2,0, 8.0, 8.0, respectively. ଵܶ, ଶܶ are defined as:  ଵܶ ൌ ݈ െݐ,   ଶܶ ൌ ݈ െ ݐ    ݈ represents time after the onset of stimulus 1 and ݐ where ,ߜ 
represents the peak time of the excitatory input, assumed to be 20 ms for both 
modalities.  ߜ represents the temporal disparity between the two sensory inputs, 
ranging from -7 to 7. The multisensory enhancement index (panel C) is given by: 
                       Enhancement Index (%) = [(CM – SMmax) / SMmax] x 100 
where CM is the total spike count evoked by the bimodal stimulus and SMmax is the 
total spike count evoked by the most effective unimodal stimulus. 

15 20 25 30
0

5

10

Bimodal
Sum
Input1
Input2

0 7
0

50

100

150

−7

15 20 25 30
0

5

10

15 20 25 30
0

5

10

15 20 25 30
0

5

10

0 7
0

5

10

−7

A

B
 Temporal disparity, msδ ( )

δ = 0 δ = 2 δ = 4 δ = 6

Time (ms)

Time (ms)

0 20 40−20

Stimulus
ON

C D

δ

Nature Neuroscience: doi:10.1038/nn.2815



7 
 

Vestibular
neurons

Visual
neurons

Heading tuning curves

Spike
generation

Divisive
normalization

Normalization
pool

dvest

dvis

y=x2

 
 
Supplementary Figure 6. Schematic illustration of the version of the 
normalization model used to simulate visual-vestibular integration by 
multisensory neurons in area MSTd.  Heading tuning curves are shown for a 
subset of (unisensory) visual and vestibular input neurons (left). Each neuron was 
tuned for heading in three dimensions, but a two-dimensional cross-section (e.g., the 
horizontal plane) is shown for clarity. The basic structure of the model is the same as 
Fig. 1, except that the input non-linearity, h(x), is omitted, and multisensory neurons 
can combine visual and vestibular inputs that have different heading preferences. 
This was done to model the distribution of visual-vestibular congruencies seen in 
MSTd (Supplementary Fig. 7C). Visual and vestibular modality dominance weights 
are denoted by dvis, dvest, respectively.  
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Supplementary Figure 7. Details of response properties for the visual-
vestibular heading (MSTd) model.  
(A,B) Distribution of 3D heading preferences of model MSTd neurons for the visual 
( ො߮௩௦, ) ௩௦) and vestibular stimulus conditionsߠ ො߮௩௦௧,  ௩௦௧). Each data point in theߠ
scatter plot corresponds to the preferred azimuth (߮, abscissa) and elevation (ߠ, 
ordinate) of a model neuron (total n =256 neurons). The data are plotted on 
Cartesian axes that represent the Lambert cylindrical equal-area projection of the 
spherical stimulus space. The histograms at the top of the scatter plots show 
marginal distributions. These distributions of heading preference were generated to 
roughly mimic data from area MSTd 3, 4. (C) Distribution of the (absolute) difference 
in heading preference between the visual and vestibular conditions, denoted |∆ 
preferred heading|. (D) The linear component of the response of a model neuron 
under the visual condition (Eqn. 14) is plotted as a function of heading direction for 
four different visual stimulus intensities (i.e., coherences). (E) The divisively 
normalized, final output of a model neuron, in the unimodal visual condition, for the 
four different visual stimulus intensities.  
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Supplementary Figure 8. The alternative model less successfully accounts for 
multisensory interactions in macaque VIP neurons. 
Predictions of the alternative model (colored symbols) are compared to the dataset 
of Avillac et al. 5 from macaque area VIP (black symbols). Format as in Figure 4D. 
Responses of the alternative model were simulated with (red symbols) or without 
(cyan symbols) subtractive lateral inhibition. Without inhibition (cyan), the alternative 
model only predicts data that lie in the right half of the plot, such that all cells show 
cross-modal enhancement. With inhibition, the alternative model only produces 
cross-modal suppression (red symbols in the lower left quadrant) when the less 
effective input (U2) is not excitatory any more, such that the data lie on the unity 
slope diagonal in the lower left quadrant. Examples of such model neurons are 
illustrated to the right (units #1-3). In contrast, data from some real VIP neurons lie in 
the lower left quadrant but off the diagonal (example unit #4; replotted from Fig.1E of 
Avillac et al, 2007). The normalization model can account for such neurons that lie 
off the diagonal (see example # 3 in Figure 4D).  

Methods. In this simulation, model neurons take on all possible combinations 
of dominance weights among the set (d1,d2 = 0.00, 0.25, 0.50, 0.75 or 1.00). 
Responses were computed in response to congruent stimuli presented in the RF 
center with the following range of stimulus intensities: 16, 32, 64, 128, 256, 512, and 
1024. For this simulation, the lateral inhibition was uniform (e.g., Suppl. Fig. 4E), but 
similar results are obtained with other profiles of inhibition. ߚ was set to either -0.002 
(red symbols) or zero (cyan symbols).  
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